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Abstract. Droughts are among the most complex and devastating natural hazards globally. High-resolution
datasets of drought metrics are essential for monitoring and quantifying the severity, duration, frequency, and
spatial extent of droughts at regional and particularly local scales. However, current global drought indices are
available only at a coarser spatial resolution (> 50 km). To fill this gap, we developed four high-resolution
(5 km) gridded drought records based on the standardized precipitation evaporation index (SPEI) covering the
period 1981–2022. These multi-scale (1–48 months) SPEI indices are computed based on monthly precipita-
tion (P ) from the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS, version 2) and
Multi-Source Weighted-Ensemble Precipitation (MSWEP, version 2.8), and potential evapotranspiration (PET)
from the Global Land Evaporation Amsterdam Model (GLEAM, version 3.7a) and hourly Potential Evap-
otranspiration (hPET). We generated four SPEI records based on all possible combinations of P and PET
datasets: CHIRPS_GLEAM, CHIRPS_hPET, MSWEP_GLEAM, and MSWEP_hPET. These drought records
were evaluated globally and exhibited excellent agreement with observation-based estimates of SPEI, root zone
soil moisture, and vegetation health indices. The newly developed high-resolution datasets provide more de-
tailed local information and can be used to assess drought severity for particular periods and regions and
to determine global, regional, and local trends, thereby supporting the development of site-specific adapta-
tion measures. These datasets are publicly available at the Centre for Environmental Data Analysis (CEDA;
https://doi.org/10.5285/ac43da11867243a1bb414e1637802dec) (Gebrechorkos et al., 2023).
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1 Introduction

Drought is one of the most complex and major natural haz-
ards, and it has devastating impacts on the environment,
economy, water resources, agriculture, and society world-
wide (Wilhite et al., 2007; Sternberg, 2011; CRED, 2018;
Van Loon, 2015; Sheffield et al., 2012; UNCCD, 2022). The
most negative impacts of drought include crop failure, food
crisis, famine, malnutrition, and poverty, which lead to loss
of life and mass migration (Vicente-Serrano et al., 2012;
Haile et al., 2019; Ngcamu and Chari, 2020; Gebrechorkos
et al., 2020; UNDRR, 2021). Globally, the occurrence of ex-
treme events, such as droughts, has increased as a result of
the increase in temperature and atmospheric evaporative de-
mand (Sheffield and Wood, 2012; Mukherjee et al., 2018;
Van Loon et al., 2022; Wehner et al., 2021). In addition, in-
creased climate variability has increased the frequency and
severity of drought events (Sivakumar et al., 2014; Naumann
et al., 2018), which has resulted in significant environmental
and socioeconomic damage globally (Mukherjee and Mishra,
2021; UNCCD, 2022). Moreover, the occurrence and im-
pact of droughts are aggravated by anthropogenic activities
such as land use change and water management and demand
(Van Loon et al., 2022; UNCCD, 2019). During the past few
decades a number of extreme drought events, with significant
impacts, have occurred in different parts of the world such as
in 2001–2009 in southeast Australia (van Dijk et al., 2013;
Peng et al., 2019a), 2017 in Europe (García-Herrera et al.,
2019), 2015 in East Africa (FEWS-NET, 2015), 2010 in Rus-
sia (Spinoni et al., 2015), 2014 in northern China (Wang and
He, 2015), 2012–2019 in California (Warter et al., 2021), and
2015–2017 in South Africa (Baudoin et al., 2017), among
others. These trends are expected to continue in the future un-
der the projected change in climate (IPCC, 2014; Naumann
et al., 2018; Wehner et al., 2021).

Several indices have been defined to quantify and moni-
tor drought at different spatial and temporal scales. Drought
indices, such as the Palmer drought severity index (Palmer,
1965), standardized precipitation index (SPI) (McKee et
al., 1993), standardized precipitation–evapotranspiration in-
dex (SPEI) (Vicente-Serrano et al., 2010a), soil moisture
deficit index (Narasimhan and Srinivasan, 2005), deciles in-
dex (Gibbs, 1967), and standardized runoff index (Shukla
and Wood, 2008), among many others, have been developed
and remain widely used. A key property of drought indices
is their spatial comparability, and they must be statistically
robust (Keyantash and Dracup, 2002). This is also the main
property of the SPI, which was recommended by the World
Meteorological Organization for identifying and monitoring
meteorological droughts in different climates and time pe-
riods (Hayes et al., 2011). The SPI is computed based on
precipitation, which makes it a simple and easy-to-apply in-
dicator for monitoring and prediction of droughts in different
parts of the world (e.g. Zhao et al., 2017; Gebrechorkos et
al., 2020; Sun et al., 2022; Cammalleri et al., 2022; Vergni

et al., 2017; Kumar et al., 2016; Gao et al., 2018; Hao et
al., 2014; Lotfirad et al., 2022). However, the SPI does not
consider other climate variables that might affect drought
and are not stationary in the current climate change sce-
nario, particularly those meteorological variables that con-
trol the atmospheric evaporative demand (Vicente-Serrano et
al., 2020, 2022). In fact, several studies have suggested that
global warming has increased drought severity, demonstrated
by the increased stress on vegetation and water resources
(Lespinas et al., 2010; Liang et al., 2010; Carnicer et al.,
2011; Allen et al., 2015; Matiu et al., 2017; Mastrotheodoros
et al., 2020). Hence, the SPEI (Vicente-Serrano et al., 2010a)
accounts also for the role of the increased atmospheric evap-
orative demand on drought severity (Vicente-Serrano et al.,
2020), being particularly dominant during periods of precip-
itation deficit.

Similar to the SPI, the SPEI can be calculated for a range
of timescales (1–48 months). The SPEI calculation requires
long-term and high-quality precipitation and atmospheric
evaporative demand datasets, which can be obtained from
ground stations or gridded data based on reanalysis as well as
satellite and multi-source datasets. High-resolution drought
information helps to better assess the spatial and temporal
changes and variability in drought duration, severity, and
magnitude at a much finer scale, which supports the devel-
opment of site-specific adaptation measures. Globally, the
SPEIbase (Vicente-Serrano et al., 2010b) and Global Precip-
itation Climatology Centre (GPCC) drought index (Ziese et
al., 2014) datasets are available at a relatively coarse spatial
resolution; the SPEIbase is available at 0.5◦ resolution cal-
culated from the Climatic Research Unit (Harris et al., 2020)
precipitation and potential evapotranspiration datasets, and
the GPCC drought index provided SPEI datasets at a 1.0◦

spatial resolution for limited timescales (1, 3, 6, 9, 12, 24,
and 48 months). These datasets, although useful for long-
term assessment, may have limitations for the assessment of
drought characteristics at detailed spatial scales.

In this study, four global high-resolution (0.05◦) SPEI
datasets based on two high-resolution precipitation and two
potential evapotranspiration datasets are developed cover-
ing the period from 1981 to 2022. The new SPEI datasets
are evaluated against coarser spatial resolution SPEI datasets
and other variables such as root zone soil moisture and
vegetation indices. The precipitation and evapotranspiration
datasets used in this study are widely used and generally re-
liable, although there may be some regions where their re-
liability is limited. Hence, developing multiple indices us-
ing different datasets will help to better manage and monitor
droughts than using a single dataset (Turco et al., 2020), par-
ticularly in data-scarce regions of the world such as Africa
and South America. Using a single dataset can be limiting,
as it may not capture the full spectrum of drought charac-
teristics and impacts. In this study, we utilize two distinct
precipitation datasets, each with its unique processing meth-
ods and data sources. This approach allows for a detailed
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assessment of results, significantly increasing the reliabil-
ity and confidence in the drought assessment. Furthermore,
these high-resolution global drought indices serve a criti-
cal role in assessing drought impacts on a global, regional,
and local scale. Such assessments are invaluable for inform-
ing the development of site-specific adaptation measures, as
they offer a more nuanced understanding of drought events
and their consequences on different scales. This paper offers
a comprehensive overview of the datasets and methodolo-
gies employed, outlined in Sect. 2. Section 3 provides an in-
depth analysis of the results, coupled with a detailed discus-
sion. The availability of the newly developed high-resolution
datasets, along with relevant links, is covered in Sect. 4, and
Sect. 5 delivers a concise conclusion.

2 Data and methodology

2.1 Datasets

High-resolution precipitation and potential evapotranspira-
tion datasets are selected for developing multi-scale high-
resolution SPEI globally (Table 1). To assess the quality of
the new high-resolution SPEI (SPEI-HR) we used multiple
datasets such as a coarse resolution global SPEI (SPEI-CR),
the root-zone soil moisture (SMroot), the vegetation condi-
tion index (VCI), and the vegetation health index (VHI). The
VCI and VHI are computed based on vegetation indices such
as the normalized difference vegetation index (NDVI) and
temperature datasets (Table 1).

2.1.1 Precipitation

The Climate Hazards Group InfraRed Precipitation with Sta-
tion data version 2.0 (CHIRPS) and Multi-Source Weighted-
Ensemble Precipitation version 2.8 (MSWEP) precipitation
estimates are used to compute SPEI quasi-globally (50◦ S–
50◦ N) and globally, respectively.

CHIRPS is a high-resolution quasi-global rainfall product
primarily developed for monitoring droughts and global en-
vironmental changes (Funk et al., 2015b). CHIRPS provides
gauge-satellite precipitation estimates covering most of the
globe with a high spatial resolution (0.05◦), low bias, and a
long period of record. The product is developed by combin-
ing satellite-only Climate Hazards Group Infrared Precipi-
tation (CHIRP), Climate Hazards Group Precipitation Cli-
matology (CHPclim; Funk et al., (2015a)), and data from
ground stations. CHIRP and CHPclim were developed based
on calibrated infrared cold cloud duration (CCD) precipita-
tion estimates and ground station data from the Global His-
torical Climate Network (GHCN), and other sources. The
product is available at the Climate Hazards Center (https:
//www.chc.ucsb.edu/data/chirps/, last access: 29 July 2023)
on daily, 10 d, and monthly timescales from 1981 to near
present. CHIRPS has been evaluated against ground obser-
vations and has been widely used in climate, hydrological,

and water resources studies, and for monitoring droughts
(e.g. Peng et al., 2020; Pyarali et al., 2022; AL-Falahi et
al., 2020; Gebrechorkos et al., 2018, 2019b, a; Mianabadi
et al., 2022; Ghozat et al., 2022; Gao et al., 2018; Sandeep
et al., 2021). The CHIRPS product benefits from homogene-
ity. The single source of background information (CHIRP) is
based on a continuous stream of geostationary satellite ther-
mal infrared observations. These low-bias background fields
are then blended with a large set of quality-controlled station
observations using a geostatistical blending procedure. The
low bias of CHIRP reduces discontinuities associated with
changes in station observation networks, which are common
in the global south.

The MSWEP is a global (all land and oceans) high-
resolution (0.1◦) precipitation product developed by merg-
ing multiple datasets including observed station data (∼
77000 stations), reanalyses, and satellite-based rainfall es-
timates (Beck et al., 2019). The observed station data in-
clude the Global Summary of the Day (GSOD), Global His-
torical Climatology Network-Daily (GHCN-D), WorldClim,
Global Precipitation Climatology Centre (GPCC), and vari-
ous national databases. The satellite datasets incorporated in
MSWEP include Global Satellite Mapping of Precipitation
(GSMaP), Climate Prediction Center morphing technique
(CMORPH), Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA-3B42RT), and
Gridded Satellite (GridSat). The reanalyses incorporated in
MSWEP include the Japanese 55-year Reanalysis (JRA-55)
and European Centre for Medium-Range Weather Forecasts
(ECMWF) interim reanalysis (ERA-Interim). MSWEP have
been evaluated and showed the best correlation compared
with 22 other global precipitation datasets (Beck et al., 2017)
and are widely used in climate, hydrology, and for monitor-
ing droughts (e.g. Li et al., 2022, 2023; Xu et al., 2019; Guo
et al., 2022; Gebrechorkos et al., 2022; Swain et al., 2017;
Alijanian et al., 2022; Turco et al., 2020). The MSWEP is
available via the GloH2O website (https://www.gloh2o.org/
mswep/, last access: 29 July 2023) from 1979 to the near
present on 3 h, daily, and monthly time frames.

2.1.2 Potential evapotranspiration

High-resolution potential evapotranspiration (PET) from the
Global Land Evaporation Amsterdam Model (GLEAM) and
hourly Potential Evapotranspiration (hPET) are used as in-
put to develop the SPEI datasets. GLEAM is a set of algo-
rithms designed to calculate actual evaporation, PET, evap-
orative stress, and root-zone soil moisture (Miralles et al.,
2011). The PET from GLEAM v3.7a (GLEAM PET) is de-
veloped based on a Priestley–Taylor equation (Eq. 1) driven
by satellite and reanalysis data. The data are available glob-
ally from 1980 to 2022 at 0.25◦ spatial resolution at daily
and monthly timescales (https://www.gleam.eu/, last access:
29 July 2023). The GLEAM data have been extensively eval-
uated and widely used for global, continental, and regional
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Table 1. Overview of the different datasets used to develop and evaluate the new high-resolution SPEI (SPEI-HR) datasets. Last access:
29 July 2023 (applicable for all URLs in this table).

Short name Full name and details Spatial
resolu-
tion

Temporal
cover-
age

Reference

CHIRPS Climate Hazards Group InfraRed Precipitation with
Station data version 2.0 (https://data.chc.ucsb.edu/
products/CHIRPS-2.0/)

0.05◦ 1981–
present

Funk et al. (2015b)

MSWEP Multi-Source Weighted-Ensemble Precipitation ver-
sion 2.8 (https://www.gloh2o.org/mswep/)

0.1◦ 1979–
present

Beck et al. (2019)

GLEAM PET Potential evapotranspiration from the Global Land
Evaporation Amsterdam Model version 3.7a (https://
www.gleam.eu/)

0.25◦ 1980–
2022

Martens et al. (2017);
Miralles et al. (2011)

GLEAM
SMroot

Root-zone soil moisture from the Global Land Evap-
oration Amsterdam Model version 3.7a (https://www.
gleam.eu/)

0.25◦ 1980–
2022

Martens et al. (2017);
Miralles et al. (2011)

hPET Hourly potential evapotranspiration from the Uni-
versity of Bristol (https://data.bris.ac.uk/data/dataset/
qb8ujazzda0s2aykkv0oq0ctp)

0.1◦ 1981–
2022

Singer et al. (2021)

NDVI Vegetation indices such as the normalized differ-
ence vegetation index from Moderate Resolution
Imaging Spectroradiometer (https://ladsweb.modaps.
eosdis.nasa.gov/missions-and-measurements/products/
MOD13C2)

0.05◦ 2000–
present

Didan (2021)

Temperature Land surface temperature data from Mod-
erate Resolution Imaging Spectroradiome-
ter (https://ladsweb.modaps.eosdis.nasa.gov/
missions-and-measurements/products/MOD11C3)

0.05◦ 2000–
present

Wan et al. (2021)

SPEI-CR Global SPEI database, SPEIbase v2.8 (https://spei.csic.
es/database.html)

0.5◦ 1901–
2021

Beguería et al. (2014);
Vicente-Serrano et al.
(2010a)

scale hydro-meteorological applications and drought studies
(e.g. Greve et al., 2014; Miralles et al., 2014; Trambauer et
al., 2014; Forzieri et al., 2017; Lian et al., 2018; Warten-
burger et al., 2018; Zhan et al., 2019; Peng et al., 2019b;
Vicente-Serrano et al., 2018).

hPET is a recently developed global high-resolution (0.1◦)
dataset available from 1981 to 2022 (Singer et al., 2021).
hPET is developed based on ERA5-Land reanalysis and it is
openly available from the University of Bristol (https://data.
bris.ac.uk/data/dataset/qb8ujazzda0s2aykkv0oq0ctp, last ac-
cess: 29 July 2023). Unlike the simple Priestley–Taylor equa-
tion used in GLEAM PET, the Food and Agriculture Organi-
zation (FAO) Penman–Monteith equation (Eq. 2) is used in
hPET (Allan et al., 1998), which, in addition to radiation,
temperature, and pressure, requires wind speed and dew-
point temperature. The hPET data compare closely with the
PET calculated based on the Climatic Research Unit (CRU)
climate datasets, which are derived from field-based mete-
orological stations also based on the same FAO Penman–

Monteith equation (Singer et al., 2021):

PETpt = α×
1× (Rn−G)
λv× (1+ γ )

, (1)

λETpm =
1× (Rn−G)+ ρa× cp×

(
es−ea

ra

)
1+ γ

(
1+ rs

ra

) , (2)

where α is the evaporative coefficient, 1 is the slope of the
saturation vapour pressure–temperature relationship, Rn is
the net radiation, G is the soil heat flux, λ is the latent heat
of vaporization, γ is the psychrometric constant, ρa is the
mean air density at constant pressure, cp is the specific heat
of the air, (es− ea) is the vapour pressure deficit of the air, ra
is aerodynamic resistance, and rs is the surface resistance.

2.1.3 Root zone soil moisture

The GLEAM root zone soil moisture (SMroot) is devel-
oped from a multilayer water balance driven by precipita-
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tion in which microwave surface soil moisture is assimilated
(Martens et al., 2017). The GLEAM SMroot has been vali-
dated using observed soil moisture data from more than 2300
soil moisture sensors and 91 eddy-covariance sites (Martens
et al., 2017), and inter-compared with other frequently used
datasets (Beck et al., 2021).

2.1.4 Coarse-resolution global SPEI datasets

The global coarse resolution (0.5◦) SPEI is a widely used
dataset for drought analysis (Vicente-Serrano et al., 2010b;
Beguería et al., 2014). This coarse-resolution SPEI (SPEI-
CR) was developed based on the 0.5◦ monthly precipitation
and PET datasets from the Climate Research Unit (CRU-TS)
(Harris et al., 2020). The FAO-56 Penman–Monteith equa-
tion is used to compute the CRU-TS PET, which is used to
develop the SPEI-CR. In this study, the SPEI-CR from 1981
to 2022 is used to evaluate the SPEI-HR datasets.

2.1.5 Vegetation indices

Vegetation indices, such as the normalized difference veg-
etation index (NDVI), vegetation condition index (VCI),
and vegetation health index (VHI), are used to investigate
drought conditions (Peng et al., 2020; Pyarali et al., 2022).
Compared with the NDVI and VCI, the VHI includes the ef-
fect of temperature on vegetation health. In this study, high-
resolution (0.05◦) NDVI (MOD13C2) and land surface tem-
perature (LST; MOD11C3) data from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) for the period
2000–2022 are used. The VHI is computed based on NDVI
and LST for the period 2000–2022 following similar work
done for Europe (Bachmair et al., 2018). To compute the VHI
(Eq. 5), first, the VCI (Eq. 3) and temperature condition in-
dex (TCI; Eq. 4) are computed using the methods developed
by Kogan (1995):

VCI=
NDVI−NDVImin

NDVImax− NDVImin
× 100, (3)

TCI=
Tmax− T

Tmax− Tmin
× 100, (4)

VHI= α×VCI + (1 − α)×TCI, (5)

where NDVI is the monthly NDVI and NDVImin and
NDVImax are the minimum and maximum NDVI values in
the time series, respectively. In addition, T is the monthly
average temperature, and Tmin and Tmax are the minimum
and maximum values of average temperature, respectively.
Finally, α is used as a constant value (0.5) in the computa-
tion of the VHI.

2.2 Methods

The standardized precipitation–evapotranspiration index
(SPEI) (Vicente-Serrano et al., 2010a; Beguería et al., 2014)
is a multiscalar drought index which combines the effect of

atmospheric evaporative demand and precipitation to quan-
tify the intensity and magnitude droughts over a given period
and on different spatial scales (station to global scales).
The SPEI has been used in a wide range of applications in
hydrology, climate, and agriculture (e.g. Pyarali et al., 2022;
Peng et al., 2020; Wang et al., 2021; Gebrechorkos et al.,
2020; Naumann et al., 2018; Mohammed et al., 2022). The
steps in computing the SPEI include the development of
high-quality PET data and the calculation of the difference
between supply and atmospheric water demand (precipi-
tation minus PET) at different time scales (1–48 months).
These differences are transformed into a normal standard
distribution using a log-logistic probability distribution fit in
order to have comparable values among periods and regions.
The choice of the log-logistic distribution for SPEI is based
on previous research (Vicente-Serrano et al., 2010a; Be-
guería et al., 2014), which demonstrated its superior ability
to generate SPEI series with standardized properties (mean
= 0, SD = 1) compared with other probability distributions.
The log-logistic distribution involves three key parameters,
i.e. α (scale), β (shape), and γ (origin), which are estimated
using the robust and straightforward L-moment procedure.
Further details on the parameter computation process can
be found in Vicente-Serrano et al. (2010a). The wet and dry
categories according to the SPEI are summarized in Table 2.
In this study, we computed SPEI datasets for the period
1981–2022 using two sets of precipitation and potential
evapotranspiration (PET) data. The precipitation datasets
CHIRPS and MSWEP were paired with the PET datasets
GLEAM PET and hPET. This resulted in the following SPEI
indices: MSWEP and GLEAM PET (MSWEP_GLEAM),
MSWEP and hPET (MSWEP_hPET), CHIRPS and
GLEAM PET (CHIRPS_GLEAM), and CHIRPS and hPET
(CHIRPS_hPET). A flow chart is provided in Fig. S1 in
the Supplement. The MSWEP, GLEAM, and hPET are
spatially interpolated to a 0.05◦ resolution using a bilinear
interpolation to match with CHIRPS. Finally, four SPEI
datasets are developed based on CHIRPS and GLEAM
(CHIRPS_GLEAM), CHIRPS and hPET (CHIRPS_hPET),
MSWEP and GLEAM (MSWEP_GLEAM), and MSWEP
and hPET (MSWEP_hPET).

The developed high-resolution global SPEI datasets
(SPEI-HR) based on CHIRPS_GLEAM, CHIRPS_hPET,
MSWEP_GLEAM, and MSWEP_hPET are evaluated
against the SPEI-CR, SMroot, VCI, and VHI at a global and
a quasi-global scale. For comparison, the SPEI-HR is aggre-
gated to the resolution of the SPEI-CR (0.5◦). In addition,
the SMroot is bilinearly interpolated to match the resolution
of SPEI-HR. For direct comparison with the SPEI, the SM-
root, VCI, and VHI are normalized by subtracting the long-
term mean and dividing by the standard deviation. Before
normalizing the VCI and VHI values, the seasonal cycle is
removed from the time series. Standardizing absolute values
allows better comparison of different datasets and has been
applied in various studies to compare different drought in-
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Figure 1. An example of 1 month of the SPEI for December 2015 in South Africa and November 2019 in Australia based on
CHIRPS_GLEAM (a, f) CHIRPS_hPET (b, g), MSWEP_GLEAM (c, h), MSWEP_hPET (d, i) and SPEI-CR (e, j). The spatial resolu-
tion of SPEI-CR is 0.5◦.

dices (Pyarali et al., 2022; Peng et al., 2020; Anderson et al.,
2011; Mu et al., 2013; Zhao et al., 2017). The comparison
between the SPEI-HR and VHI is performed for the period
2000–2022. The agreement between the SPEI-HR and SPEI-
CR, SMroot, VCI, and VHI is assessed using Pearson’s cor-
relation coefficient.

3 Results and discussion

3.1 Agreement between the SPEI-HR and SPEI-CR
datasets

The SPEI-HR, compared with the SPEI-CR, provides more
local information and spatial detail on drought conditions
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Table 2. SPEI values and their wet and dry categories.

SPEI categories SPEI values SPEI values
(Danandeh Mehr (Agnew, 2000)
et al., 2020)

Extremely wet > 1.83
Very wet 1.43 to 1.82
Moderately wet 1.0 to 1.42
Near normal −0.99 to 0.99
Moderately dry −1.0 to −1.42 −0.84 to −1.27
Severely dry −1.43 to −1.82 −1.28 to −1.64
Extremely dry <−1.83 <−1.65

(Fig. 1). Figure 1 shows an example of severe droughts in
South Africa in 2015 and Australia in 2019. In December to
February 2015–2016, South Africa faced a severe drought
driven by one of the strongest El Niño events in the past
five decades, which caused severe consequences for food
security in the region (Funk et al., 2018, 2016). In addi-
tion, November 2019 was the driest month in Australia with
the lowest rainfall record (Funk, 2021). According to the
Australian Government Bureau of Meteorology (Australian
Government Bureau of Meteorology, 2023), November 2019
was the driest month across most of the country with lower
rainfall and drier soil moisture records. The severe drought
events in South Africa and Australia are very well repro-
duced by the SPEI-CR (Fig. 1). The SPEI-HR, compared to
the SPEI-CR, clearly depicted the wetter and drier parts of
Australia in November 2019. In Australia, for example, the
wet events in the northern part of Western Australia and the
central part of New South Wales states are well represented
by the SPEI-CR. Similarly, the drought in South Africa in
2015 is well represented by the SPEI-HR as reported by Funk
et al. (2018). However, wet events (SPEI up to 2.4) are shown
by the SPEI-CR in the northern part of Mozambique. Over-
all, high-resolution information is more useful for manag-
ing and monitoring droughts at a local scale than the SPEI-
CR, which exhibits much smoother patterns due to the in-
terpolation of station observations (McRoberts and Nielsen-
Gammon, 2012; Santini et al., 2023; Park et al., 2017; Jung
et al., 2020).

Furthermore, the SPEI-HR datasets are temporally evalu-
ated using the SPEI-CR during the period 1981–2022. For
the 1 month SPEI, for example, the correlation between
CHIRPS_GLEAM, CHIRPS_hPET, MSWEP_GLEAM, and
MSWEP_hPET with the SPEI-CR is significant (R > 0.5,
p < 0.1) in large parts of the world (Fig. 2). The correla-
tion between the SPEI-HR and SPEI-CR in the USA, Eu-
rope, Asia, and Australia is > 0.8. However, it is lower in
the tropical and arid regions of Africa and South America.
The lower correlations reflect a lower data quality in these
regions due to a lack of station observations (Menne et al.,
2012) and the frequent occurrence of difficult-to-predict (us-

ing models) and measure (using gauges) intense, localized
convective storms (Feng et al., 2021).

The 12 month SPEI from the SPEI-HR and SPEI-CR
also shows a higher correlation in large parts of the world
(Fig. 3). The correlation between the SPEI-HR and SPEI-CR
is very high in the USA, Asia, and Australia, but is lower
in central Africa and northern South America. In Africa
and South America, CHIRPS_GLEAM and CHIRPS_hPET
show a higher correlation with the SPEI-CR compared with
MSWEP_GLEAM and MSWEP_hPET. This higher corre-
lation for CHIRPS may be due to the larger number of sta-
tions incorporated in CHIRPS than in MSWEP. The positive
correlation increases with an increase in SPEI timescales.
This indicates the cancellation of random errors, as the in-
tegration period increases. However, there is a low correla-
tion between the SPEI-HR and SPEI-CR in parts of central
Africa and northern South America. The lower correlation
in the tropics (e.g. South America and Africa) is likely due
to the very limited number of ground observations used in
the development of the CRU-TS precipitation (Harris et al.,
2020), which is used to develop the SPEI-CR. In line with
this study, a lower correlation between the global drought
probabilistic index developed from several global precipita-
tion datasets and the MSWEP-based SPI index was reported
in South America and Africa (Turco et al., 2020). These same
areas have been shown to be areas of substantial disagree-
ment for wet season precipitation totals (Funk et al., 2019b).
In tropical regions with heavy convective precipitation, satel-
lite inputs can produce very different results from station-
only precipitation estimations.

The lower correlation in arid areas can also be due to the
uncertainty of the forcing datasets, very few station obser-
vations, very few events, and intense, localized convective
systems, which are difficult to measure and predict in these
areas.

3.2 Agreement between the SPEI-HR and regional
SPEI datasets

The new dataset, SPEI-HR, is compared with other high-
resolution SPEI datasets in central Asia (Pyarali et al.,
2022) and Africa (Peng et al., 2020). The central Asia
SPEI (CA-SPEI) was developed based on CHIRPS and
an older version of GLEAM PET for the period from
1981 to 2018. The CA-SPEI exhibits a stronger corre-
lation with CHIRPS_GLEAM than with CHIRPS_hPET,
MSWEP_hPET, and MSWEP_GLEAM (Fig. S2). The cor-
relation between the CA-SPEI and CHIRPS_GLEAM ex-
ceeds 0.5. The agreement between the CA-SPEI and
CHIRPS_hPET, MSWEP_hPET, and MSWEP_GLEAM is
high in Kazakhstan but lower in Kyrgyzstan. This vari-
ation may be attributed to the differences in the perfor-
mance of MSWEP and CHIRPS, in addition to varia-
tions in PET. According to Peña-Guerrero et al. (2022)
MSWEP effectively represents the temporal dynamics of
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Figure 2. Temporal correlation between the new high-resolution SPEI (SPEI-HR) based on (a) CHIRPS_GLEAM, (b) CHIRPS_hPET,
(c) MSWEP_GLEAM, and (d) MSWEP_hPET, and the coarse resolution SPEI (SPEI-CR) for SPEI-01 month.

Figure 3. Temporal correlation between the new high-resolution SPEI (SPEI-HR) based on (a) CHIRPS_GLEAM, (b) CHIRPS_hPET,
(c) MSWEP_GLEAM, and (d) MSWEP_hPET, and the coarse resolution SPEI (SPEI-CR) for the 12 month SPEI.

precipitation, while CHIRPS captures the distribution and
volume of precipitation in central Asia. Similarly, SPEI-
HR demonstrates a correlation with the Pan-African high-
resolution SPEI (AF-SPEI) dataset (Peng et al., 2020). In
Africa, both CHIRPS_GLEAM and CHIRPS_hPET exhibit
a higher correlation (> 0.75) with AF-SPEI compared with
MSWEP_GLEAM and MSWEP_hPET for the period 1981–
2016 (Fig. S3). The AF-SPEI, similar to the CA-SPEI,
was developed based on CHIRPS and an older version of
GLEAM PET (version 3a). On the whole, the correlation be-
tween the SPEI-HR and AF-SPEI exceeds 0.45 in Africa.

3.3 Agreement between the SPEI-HR and root zone soil
moisture

The SPEI-HR is also evaluated using root zone soil mois-
ture (SMroot) data obtained from GLEAM. Figure 4,
for example, shows the temporal correlation between the
6 month SPEI computed based on the CHIRPS_GLEAM,
CHIRPS_hPET, MSWEP_GLEAM, MSWEP_hPET, and
SMroot. The SPEI-HR shows a reasonably good agreement
with the SMroot with a correlation greater than 0.5 in large
parts of the world except in some parts of the tropical and
subtropical regions. Compared with other parts of the world,
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Figure 4. Temporal correlation between the SMroot and 6 month SPEI based on (a) CHIRPS_GLEAM, (b) CHIRPS_hPET,
(c) MSWEP_GLEAM, and (d) MSWEP_hPET. Panel (e) shows a global average (only up to 50◦ N) time series of the SMroot and 6 month
SPEI based on CHIRPS_GLEAM, CHIRPS_hPET, MSWEP_GLEAM, MSWEP_hPET, and SPEI-CR.

the correlation between the SPEI-HR and SMroot is lower in
the tropical part of Africa. The global average SMroot time
series also shows a good agreement with the SPEI-HR com-
pared with the SPEI-CR. According to Peng et al. (2020),
high-resolution SPEI datasets agree well with SMroot at 3
and 6 month timescales. The SPEI-CR, particularly after
2000, shows a more negative SPEI compared with the SM-
root and SPEI-HR (Fig. 4e). The difference in the SPEI-CR
(Fig. 4e) compared with the SMroot and SPEI-HR can be
due to the reduction in the number of stations in the CRU-TS
dataset (Funk et al., 2019a). The regional average time series
of the SPEI-06 and SMroot also show the deviation of the
SPEI-HR and SPEI-CR, particularly in Africa, South Amer-
ica, and Asia (Fig. 5). In Europe and the USA, the regional
average 6 month SPEI and SMroot show a similar pattern of
wet and dry events. However, in Africa (South America), the
SPEI-CR before (after) 2000 shows much drier events than
the SMroot and SPEI-HR. Similarly, MSWEP_hPET also

shows more extreme wet events than the SMroot in Africa
before 2000.

3.4 Agreement between the SPEI-HR and vegetation
indices

Vegetation indices are used to determine patterns of agri-
cultural drought and they are popular for drought monitor-
ing (Zuhro et al., 2020; Bento et al., 2018; Zeng et al.,
2022). Remotely sensed vegetation indices provide addi-
tional information for monitoring and early warning of agri-
cultural droughts (Bachmair et al., 2018). Figure 6 shows the
correlation between the VHI and the 6 month SPEI based
on CHIRPS_GLEAM, CHIRPS_hPET, MSWEP_GLEAM,
and MSWEP_hPET. The agreement between the VHI and
MSWEP_GLEAM and MSWEP_hPET is lower in the po-
lar and subpolar regions of North America and Asia. How-
ever, there is a positive relationship in other parts of the world
such as in South America, Africa, Australia, and the east and
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Figure 5. Regional average time series of the SMroot and 6 month SPEI based on CHIRPS_GLEAM, CHIRPS_hPET, MSWEP_GLEAM,
MSWEP_hPET, and SPEI-CR averaged over (a) Africa, (b) Australia, (c) Europe, (d) South America, (e) North America (USA only), and
(f) Asia.

southern parts of Asia. In addition, the VHI showed a bet-
ter correlation with the SPEI-HR compared with the VCI. As
described in Sect. 2.1, the VCI is based on NDVI and does
not consider explicitly the effect of temperature on vegeta-
tion health, yet the VCI shows a positive correlation in differ-
ent parts of the world, particularly in tropical and subtropical
zones (Fig. 7).

Results agree with previous studies which showed a
good relationship between vegetation indices and the SPEI
(Vicente-Serrano et al., 2018; Törnros and Menzel, 2014;
Pyarali et al., 2022; Peng et al., 2020). Lower correlations
between the SPEI-HR and VHI and VCI can be due to the
complex nature of vegetation physiological processes and
the effect of other climate and environmental drivers (Ne-
mani et al., 2003). The time lag between precipitation and
NDVI might also affect the lower correlation as compared
with SMroot (Funk and Brown, 2006; Seddon et al., 2016;

Papagiannopoulou et al., 2017; Wu et al., 2015). Previous
studies have used NDVI to evaluate SPEI (Rojas et al., 2011;
Vicente-Serrano et al., 2018; Törnros and Menzel, 2014;
Pyarali et al., 2022; Peng et al., 2020). However, compared
with VCI, VHI gives a better correlation with SPEI, which
might be due to the consideration of the effect of warming
on drought and vegetation health.

3.5 Uncertainties in the SPEI-HR

This high-resolution SPEI dataset will serve as a basis for
drought analysis and the development of effective mitigation
and adaptation strategies at a local scale. However, it is im-
portant to consider the uncertainties in the datasets due to the
uncertainties in the precipitation and PET input datasets. The
uncertainty in precipitation and PET, which has its inherent
uncertainties, stemming from measurement errors, interpola-
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Figure 6. Temporal correlation between the vegetation health index (VHI) and 6 month SPEI based on (a) CHIRPS_GLEAM,
(b) CHIRPS_hPET, (c) MSWEP_GLEAM, and (d) MSWEP_hPET.

Figure 7. Temporal correlation between the vegetation condition index (VCI) and 6 month SPEI based on (a) CHIRPS_GLEAM,
(b) CHIRPS_hPET, (c) MSWEP_GLEAM, and (d) MSWEP_hPET.
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tion methods, and data gaps, can propagate and amplify these
uncertainties in SPEI datasets. To reduce the uncertainties,
the precipitation datasets employed in this study are widely
recognized and have been extensively used in hydroclimatol-
ogy research, including the development of drought indices
(Pyarali et al., 2022; Peng et al., 2020; Hendrawan et al.,
2022; Ma et al., 2023). Furthermore, a global-scale evalua-
tion of 22 precipitation datasets has demonstrated the reli-
ability of MSWEP and CHIRPS (Beck et al., 2017). Addi-
tionally, the GLEAM model output, particularly atmospheric
evaporative demand, exhibits lower absolute and relative er-
rors compared with other datasets such as the Global Land
Data Assimilation System (GLDAS) and the MODIS Global
Evapotranspiration Project (MOD16) (Khan et al., 2018).
According to Laimighofer and Laaha (2022) the observation
period used to estimate the SPEI and SPI distribution pa-
rameters introduces uncertainties. These uncertainties tend
to significantly decrease when shifting from 20 to 60 years
of records, as the parameters stabilize. For instance, increas-
ing the record length from 20 to 60 years reduces the to-
tal variance by 58 %, although further improvements are
not observed beyond 60 years. Additionally, the selection
of the distribution also significantly reduces uncertainty by
23 % (Laimighofer and Laaha, 2022). For the SPEI, the log-
logistic distribution demonstrated its superior ability to gen-
erate SPEI series compared with other probability distribu-
tions (Vicente-Serrano et al., 2010a; Beguería et al., 2014),
which lowers the uncertainties. In addition to the length of
observation and distribution method, the parameter estima-
tion method can lead to uncertainties. The estimation of pa-
rameters depends on the choice of the distribution method
but is often minimal when compared to the uncertainties in
the precipitation and PET input datasets (Tallaksen and La-
nen, 2004; Laimighofer and Laaha, 2022). Overall, it is well
stated that the source of uncertainties in drought indices can
be notably reduced by using longer periods of high-quality
precipitation and PET datasets, and by selecting appropriate
distribution methods.

4 Data availability

The new high-resolution (0.05◦) global drought
indices (SPEI-HR) based on CHIRPS_GLEAM,
CHIRPS_hPET, MSWEP_GLEAM, and MSWEP_hPET
are freely available at the Centre for Environmen-
tal Data Analysis (CEDA; https://doi.org/10.5285/
ac43da11867243a1bb414e1637802dec) and on JAS-
MIN (/badc/hydro-jules/data/Global_drought_indices)
(Gebrechorkos et al., 2023). JASMIN is a unique
data-intensive HPC system for environmental sci-
ence (https://jasmin.ac.uk/, JASMIN, 2023a). For get-
ting access to JASMIN please follow this link https:
//help.jasmin.ac.uk/article/189-get-started-with-jasmin
(JASMIN, 2023b). The data are available under

four directories (CHIRPS_GLEAM, CHIRPS_hPET,
MSWEP_GLEAM, and MSWEP_hPET) containing spei01
to spei48 months for the period 1981–2022. The SPEI data
cover (land only) all longitudes and from−50 to 50◦ latitude
for CHIRPS_GLEAM and CHIRPS_hPET, and from −55
to 85◦ for MSWEP_GLEAM and MSWEP_hPET. The size
of each SPEI file (i.e. NetCDF) is between 5 and 9 GB.

5 Conclusions

We produced four global high-resolution (0.05◦) and long-
term (1981–2022) drought datasets using the SPEI, which
is a multi-scale drought index used for drought monitoring
and to assess the duration and severity of droughts at dif-
ferent scales (global to local scale). Here, the SPEI is com-
puted based on high-resolution precipitation from CHIRPS
and MSWEP and potential evapotranspiration (PET) from
GLEAM and hPET. The GLEAM and hPET are developed
based on Priestley–Taylor and FAO Penman–Monteith equa-
tions, respectively. These new high-resolution global SPEI
datasets (SPEI-HR) are validated using observation-based
coarse-resolution SPEI datasets (SPEI-CR), regional scale
high-resolution SPEI datasets, root zone soil moisture (SM-
root), the vegetation condition index (VCI), and the vegeta-
tion health index (VHI). The good agreement between the
SPEI-HR and SPEI-CR, SMroot, VCI, and VHI confirms the
suitability of the data for assessing and monitoring droughts.
In addition, the SPEI-HR provides more local information
as it is available at a much higher spatial resolution (0.05◦)
compared with currently available global drought indices
such as the SPEI-CR. Overall, these new multi-timescale (1–
48 months) SPEI datasets can be used for drought monitor-
ing and assessing drought severity and duration at a local and
global scale allowing the development of site-specific adap-
tation measures.
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