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A B S T R A C T   

Rainfall patterns influence water usage and revenue from user payments in rural Africa. We explore these dy-
namics by examining monthly rainfall against 4,888 records of rural piped water revenue in Ghana, Rwanda, and 
Uganda and quantifying revenue changes over 635 transitions between dry and wet seasons. 

Results show operators experience revenue variability at regional and intra-seasonal scales. Revenues fall by 
an average of 30 percent during the wettest months of the year in climate regimes with consistent wet season 
rainfall. However, seasonally stable revenues are observed in areas where consecutive dry days are common 
during the wet season, potentially reflecting a dependency on reliable services. We also find changes in tariff 
level, waterpoint connection type, and payment approach do not consistently prevent or increase seasonal 
revenue variability. 

Local revenue generation underpins delivery of drinking water services. Where rainfall patterns remain 
consistent, piped water operators can expect to encounter seasonal revenue reductions regardless of whether 
services are provided on or off premises and of how services are paid for. Revenue projections that assume 
consistent volumetric demand year-round may lead to shortfalls that threaten sustainability and undermine the 
case for future investment. Intra-seasonal rainfall analysis can enhance rural piped water revenue planning by 
offering localised insight into demand dynamics and revealing where climate variability may increase de-
pendency on reliable services.   

1. Introduction 

Current climate models predict increases in frequency and intensity 
of drought and heavy rainfall events and decreases in mean precipitation 
almost everywhere in Africa, with medium to high confidence (Gutiérrez 
et al., 2021). However, local rainfall trends and socio-climatic in-
teractions are likely to manifest in mixed patterns (Conway and Schip-
per, 2011), and the converging impacts of climate change will vary 
across the continent. In rural areas, rainfall patterns influence water 
usage and threaten the stability of revenue generation. Remote and in 
situ monitoring systems can generate warning signals (Armstrong et al., 
2021), but improved understanding is needed to inform resilient water 
investments in rural Africa. We analyse seasonal revenue dynamics of six 
small-scale piped water operators in rural Ghana, Rwanda, and Uganda 
over a four-year period to address three research questions. First, how 
does seasonal rainfall influence revenue from user payments for rural 
piped water services? Second, which rainfall metrics are useful for 
characterising seasonal revenue variability? Third, do tariff level, 

connection type, and payment approach influence seasonal revenue 
patterns? 

2. Rainfall and rural water services 

2.1. Seasonal revenue variability 

For more than a century, piped water services in the Global South 
have been planned and financed under an urban paradigm transferred 
from the Global North (Braadbaart, 2012). A core assumption of this 
model is that a household connected to a piped network will collect and 
use consistent volumes of water from that connection each month of the 
year, with infrastructure and tariffs designed accordingly. Yet evidence 
from across sub-Saharan Africa shows rural households have access to 
and use multiple water sources of varying service levels for different 
domestic and productive activities, some of which they pay for and some 
they do not, and they change the sources they use throughout the year 
depending on availability of seasonal surface or rainwater (Elliott et al., 
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2019, Hoque and Hope, 2018, Smits et al., 2008, Thompson et al., 2001). 
Rain-fed sources such as domestically harvested rainwater can be more 
convenient and reliable than primary water supplies during wet seasons 
and are often accessible without payment or at a lower price point after 
an initial capital investment is recovered. Households that utilise rain- 
fed sources can therefore spend less time and money on water collec-
tion during wet seasons (Kelly et al., 2018) and may even experience 
enhanced resiliency to supply shocks (Elliott et al., 2019, Kohlitz et al., 
2020). 

However, seasonal demand dynamics can threaten financial and 
operational viability of rural water services. Several studies conducted 
in Africa and Asia suggest domestic use of rural handpumps and piped 
schemes alike can fall by 20 to 30 percent during wet periods (Arm-
strong et al., 2021, Elliott et al., 2019, Kulinkina et al., 2016, Thomson 
et al., 2019). When payments for professional water services are based 
on volumetric usage, seasonal reductions in water use means revenues 
are more irregular with implications for operational sustainability. 
Seasonal revenue variability for handpump services has been docu-
mented in several sub-Saharan countries (Foster and Hope, 2016, 2017, 
Kelly et al., 2018), but its severity and extent related to piped water 
services across the continent is not well understood. 

2.2. Rainfall dynamics 

Despite the growing body of evidence demonstrating seasonal use of 
multiple water sources, little is published about how rural households 
respond to spatial and temporal variations in seasonal rainfall and how 
this demand response poses a revenue threat to water services within 
different climate regimes. Except for a few studies that combine longi-
tudinal rainfall and water use data (Armstrong et al., 2021, Kulinkina 
et al., 2016, Thomas et al., 2019, Thomas et al., 2021, Thomson et al., 
2019), most analyses draw on cross-sectional household surveys and 
utilise a binary, often subjective wet/dry monthly classification which 
hides presumably important intra-seasonal nuances about onset, dura-
tion, and intensity of dry and rainy periods (Wainwright et al., 2021). 
Water demand and revenue dynamics are likely driven by localised, 
weekly or even daily changes rather than whether a given month falls in 
a wet or dry season according to conventional definitions or is wetter or 
dryer than historical averages. This poses several questions pertaining to 
our study. In wetter climates, does a more consistent year-round prev-
alence of rainwater use lead to attenuated seasonal dynamics? Consid-
ering evidence that domestic withdrawals from boreholes decrease 
within a few days of heavy rainfall events (Thomas et al., 2019, 
Thomson et al., 2019), will less frequent but more intense rainfall lead to 
higher annual averages but more dramatic instantaneous falls in de-
mand and revenue? Are households less likely to use seasonal sources as 
rainfall becomes more irregular and unreliable, particularly during 
rainy seasons (Kendon et al., 2019)? Will the revenue threat to rural 
water services increase or decrease as household use of rain-fed sources 
occurs over condensed time periods? Billions are spent on efforts to 
increase access and maintain drinking water services based on simple 
demand assumptions stemming from this knowledge gap. The revenue 
models upon which infrastructure investment decisions are made could 
be enhanced with improved understanding of how rainfall patterns in-
fluence water use and payment behaviours. This is a necessary precursor 
to assessing and addressing seasonal and climatic revenue threats to 
rural water services at local, regional, and global scales and to priori-
tising investments that maximise sustainability and equitability of 
outcomes. 

2.3. Behavioural determinants 

Rural piped water service providers that are losing market share to 
alternative sources such as seasonal rainwater may seek to understand 
what aspects of their service households prefer, and what it would take 
to incentivise consistent year-round use. Improved understanding of 

how various determinants modify seasonal water source choice and 
payment behaviours of rural households can strengthen strategies for 
addressing the rainfall-related revenue threat. The importance of price, 
proximity, reliability, and water quality on rural households’ decisions 
to choose one rural water source over another have been highlighted in 
the literature (Briscoe et al., 1981, Gross and Elshiewy, 2019, Mu et al., 
1990, Wagner et al., 2019). Similar factors appear to affect payments for 
the services that operate and maintain water sources. Rural households 
are less likely to use and pay for water the further the source is from their 
residence, especially when alternative water sources are nearby 
(Koehler et al., 2015, Kulinkina et al., 2016). Faster maintenance 
response time (Hope (2015), Hope and Ballon, 2019, 2021), favourable 
and dependable service delivery arrangements (Hope (2015), Hutchings 
et al., 2017, Koehler et al., 2015, Koehler et al., 2018), and perceived 
water quality (Foster and Hope, 2016, Hope and Ballon, 2019, 2021) 
may increase user payments. An important interaction effect is that 
households often use water from seasonal sources that are lower in 
quality and cost for purposes other than drinking and cooking (Hoque 
and Hope, 2020, Pearson et al., 2016, Thomson et al., 2019, Tucker 
et al., 2014). Payment approach is also an important modifier of rural 
water user payments and revenues. Pay-as-you-fetch (PAYF) payments 
collected on a volumetric basis may generate more revenue overall and 
per volume than flat fees collected periodically (Foster and Hope, 2017). 
However, PAYF payments are also linked to higher rates of seasonal 
multiple water source use than flat fees across all socioeconomic classes 
(ibid.) and may be less resilient to seasonal variability (Armstrong et al., 
2021). 

The limited evidence that is available suggests rural demand for 
payment-based water services is prone to being exchanged for seasonal 
rainwater if the rainwater is less expensive, more convenient, more 
reliable, and an acceptable quality for non-consumptive uses. A key 
knowledge gap is whether reliable piped water services provided on 
household premises, which are at least as convenient as rain-fed sources 
during the wet season, can stabilise willingness to pay for the primary 
service and reduce seasonal revenue variability. We explore this ques-
tion through an analysis of a multi-decadal operational dataset while 
also considering the potential modifying effects of tariff level and pay-
ment approach. 

3. Methods 

3.1. Quantifying seasonal revenue variability 

Our empirical analysis draws on operational data from six rural 
piped water operators in Ghana, Rwanda, and Uganda. After extraction 
and cleaning, a total of 4,888 records of monthly revenue from user 
payments corresponding to geographic service areas of individual piped 
schemes spanning the years 2016 to 2019 are analysed. We exclude 
records from the analysis if fewer than twelve months are available for 
any service area. This approach ensures the analysis spans at least one 
annual rainfall cycle in each service area. We convert all monthly rev-
enue records from local currency to 2019 US dollars per waterpoint by 
applying deflator factors and currency conversion rates at purchasing 
power parity for private consumption obtained from the World Bank 
Development Indicators database (World Bank, 2020) and dividing by 
the number of functional waterpoints in the service area for the corre-
sponding month. This enables our analysis to consider the effect of 
temporal demand fluctuations on revenue. We assess seasonal revenue 
variability as percent change in the rate of monthly revenue per 
waterpoint between chronological dry and wet seasons, rather than in 
absolute magnitudes, to account for variation in scheme size and service 
population across the dataset. 

Our seasonal classification utilises Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) data (Funk et al., 2014) and adapts 
the methodology described by Liebmann et al. (2012). Recognising the 
implications of intra-seasonal rainfall dynamics for our research 
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questions, our approach diverges from typical climatological analysis by 
classifying individual months as wet or dry relative to annual rainfall 
means instead of identifying onset and cessation of prominent wet and 
dry seasons and referencing long-term, multi-year means. Daily geo-
spatial rainfall data corresponding to each service area over the range of 
dates present in the operational dataset (2016–2019) are extracted from 
the CHIRPS data. Rainfall levels are summed monthly to align with 
revenue records. For each service area and month, the monthly rainfall 
anomaly is calculated by subtracting the monthly average rainfall cor-
responding to the annual mean from the total rainfall for that month. We 
classify each month as wet or dry relative to the annual mean such that 
negative anomaly values represent dry months and positive anomaly 
values represent wet months. We then group records corresponding to 
consecutive dry or wet months together as seasons. This approach ac-
commodates intra-seasonal rises and falls in rainfall which might have a 
critical influence on water use, but also allows erratic shifts which can 
distort revenue patterns. To compensate for this, we assume a threshold 
requirement that monthly rainfall is a defined percentage more or less 
than its local annual average for transitions between seasons to occur. 
We test the sensitivity of this threshold and find values of five percent or 
less apply to fewer than one month per year for the average service area 
and yield nearly the same seasonal patterns as when no threshold is 
applied, while threshold values of 15 percent or more apply to three 
months per year for the average per service area and conceal the intra- 
seasonal dynamics we hope to incorporate. We therefore adopt a mod-
erate seasonal transition threshold requirement of ten percent of the 
local annual average rainfall in our methodology. Finally, we calculate 
the percent change in the average revenue generation rate from each dry 
season to the chronological wet season. 

We identify anomalies in the data that appear to result from opera-
tional factors such as extended periods of service disruption, adminis-
trative changes to billing procedures or failure to collect user payments, 
inclusion of arrears in monthly revenue records, data recording errors, 
and infrastructure upgrades. Where possible, data are corrected based 
on discussion with operators. To further account for exogenous factors 
which exert an unknown effect on revenue, single months with no 
recorded revenue are assumed to represent true drops in demand while 
two or more consecutive months with no recorded revenue are assumed 
to reflect operational factors that should be controlled or minimised in 
the analysis and are excluded. The excluded monthly records are evenly 
distributed across dry and wet seasons and ultimately do not exert a 
directional effect on our results. We also identify extreme outliers in 
calculated seasonal percent change in revenue generation rate. Values 
greater than three standard deviations from the absolute value of the 
mean for each country are identified and considered for exclusion. This 
methodology only identifies exceptionally large increases in wet season 
revenue because revenues cannot decrease by more than 100 percent. 
These extreme outliers, which are found to be nonrecurring in individual 
service areas and therefore likely reflect operational factors rather than 
increased wet season water demand, are excluded. In total, we exclude 
242 monthly records of no revenue and 45 chronological season tran-
sition pairs from the analysis. From the remaining dataset, we calculate 
mean percent change in monthly revenue per waterpoint between 
chronological dry and wet seasons across all service areas as well as 
those supported by each operator. Differences in means is evaluated via 
one-way ANOVA and homogeneous subsets are identified via Tukey’s 
HSD. 

3.2. Evaluating rainfall dynamics 

We again utilise the CHIRPS dataset to evaluate several rainfall 
metrics in the geolocations of the observed piped water service areas 
which have potential to reveal intra-seasonal patterns in water demand 
and revenue. Daily rainfall estimates from 2016 to 2019 covering 
separate rectangular grids spanning the minimum and maximum lati-
tudes and longitudes of the service areas in Ghana, Rwanda, and Uganda 

are extracted and manipulated for this purpose. We first generate plots 
of average monthly precipitation (“monthly precipitation”) for each ser-
vice area to compare the overall intensity and seasonal dynamics of the 
respective rainfall profiles. Following the methodology described by 
Liebmann et al. (2012) and advanced by Dunning et al. (2016) we use 
daily rainfall to calculate and plot the average annual dry season 
duration (“dry season duration”) for geographic grids corresponding to 
the observed service areas by identifying and subtracting the average 
dry season completion date from the average onset date. When two dry 
seasons are prevalent in the typical year, we generate separate plots for 
each. When no clear patterns emerge from observation of these two 
metrics that are based on monthly rainfall and seasonal timing, we 
calculate the cumulative number of instances of three, seven, and 
fourteen consecutive days with no precipitation during the main wet 
season (“instances of dry days”) for each location. Although consecutive 
dry day metrics are more commonly used as indicators of drought in-
tensity and frequency, recent climate models suggest future increases in 
dry period duration during the wet season over parts of Africa (Kendon 
et al., 2019). We apply these metrics to the three-month period of the 
main wet season in each country to illustrate intra-seasonal rainfall 
variability in the service areas. Durations of three, seven, and fourteen 
days are chosen to align with assumed household water storage prac-
tices. Rural African households that collect seasonal rainwater likely 
store and use it over several days. Dry periods of three consecutive days 
during the wet season are unlikely to disrupt this behaviour, but dry 
periods of a week or more may inhibit rainwater use. We quantify in-
stances of dry days for each of these durations in 0.05-degree grids, assign 
values to a colour scale, and generate plots covering the geographic 
regions of the service areas. These plots are overlaid with markers 
indicating service area locations that experience “variable” or “stable” 
seasonal revenue based on a threshold of five percent, and we examine 
the plots for alignment or notable patterns. 

3.3. Analysing behavioural determinants 

Our data classification is aligned with previous work (Armstrong 
et al., 2022) which makes it possible to analyse the effects of tariff level, 
waterpoint connection type, and payment approach on seasonal revenue 
variability. The tariffs observed across the dataset are based on a volu-
metric water usage charge for all consumption levels, either per 
container or cubic metre, and do not contain a recurring fixed service 
charge. We convert all tariff levels to 2019 US dollars per cubic metre 
from local currency at purchasing power parity for private consumption. 
All records are further classified by waterpoint connection type: stand-
pipes and kiosks are designated as off-premises connections and taps 
located in private homes or yards or dedicated for use at educational, 
religious, or healthcare facilities are designated as on-premises con-
nections. Records corresponding to mixed schemes that include both on 
and off-premises connections are split into separate, geographically 
coincidental service areas so that all units of analysis share a common 
and static waterpoint connection type and operator. Payments across the 
observed service areas are collected from users who access off-premises 
connections by one of two approaches: the conventional PAYF approach, 
where users pay a standpipe or kiosk attendant when they collect water 
from the waterpoint, and the prepaid credit approach, where users pre- 
purchase electronic credit that can later be redeemed at the waterpoint. 
For on-premises connections, users pay either by conventional billing 
based on metered usage during the previous billing cycle or by prepaid 
credit where water is purchased in bulk and dispensed via an electronic 
meter. 

Parameters from generalised estimating equations (GEEs) are esti-
mated to evaluate the isolated effects of these factors on seasonal rev-
enue variability. The GEE method (Zeger et al., 1988) is chosen over 
other linear regression approaches because monthly records are clus-
tered by operator which violates the independence assumption. The 
method also fits well into our approach because it estimates population- 
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averaged effects when covariates are unknown or unable to be 
controlled (Muff et al., 2016). We run separate GEE models for all re-
cords as well as clusters corresponding to individual operators and 
groups of interest. All modelling is conducted in IBM SPSS (IBM SPSS 
Statistics for Windows, Version 27.0. Armonk, NY: IBM Corp) with 
chronological season transition pairs as repeated measures, service areas 
as subjects, and operator as a within-subject variable to adjust for 
clustering. We construct a continuous response variable from change in 
monthly waterpoint revenue between chronological dry and wet seasons 
(percent) and utilise tariff level, connection type, and payment approach 
as explanatory variables. Tariff levels (2019 $/m3 at PPP) are centred on 
the mean for all records included in each model and modelled as a 
continuous covariate. Connection type (on premises; off premises) is 
modelled as a categorical factor. Payment approach is correlated with 
waterpoint connection type because all service areas that utilise pay-as- 
you-fetch payments contain off-premises connections and all service 
areas that utilise monthly billing contain on-premises connections. 
Therefore, we include a transformed binary variable based on utilisation 
of prepaid credit (conventional payments; prepaid credit payments) in 
the models as a categorical factor. We run each model once with an 
unstructured correlation matrix and again with an autoregressive cor-
relation matrix, the latter of which considers correlations to be highest 
for time-adjacent records and to systematically decrease with increasing 
time distance between records. The correlation matrix with the lowest 
quasi-likelihood of independence criterion (QIC) statistic is determined 
to be the best fit. 

4. Results 

Here we describe our most salient findings based on observation of 
seasonal revenue, evaluation of rainfall metrics, and analysis of selected 
behavioural determinants. 

4.1. Seasonal revenue 

The box plots in Fig. 1 illustrate dispersion of the average percent 
change in monthly revenue per waterpoint between a total of 635 
chronological dry and wet seasons observed across all service areas as 
well as clustered by operator. Full descriptive statistics disaggregated by 

waterpoint connection type and payment approach are reported in 
Supplemental Table 1. 

We observe a wide range of seasonal revenue change across the 
dataset (IQR 50 percent), with all operators experiencing wet season 
revenue falls in at least some service areas. Operator A in Rwanda and 
Operator B in Ghana experience overall negligible seasonal revenue 
variability, but Operator C in Ghana and operators D, E, and F in Uganda 
experience an aggregated average 30 percent reduction in revenue 
during wet seasons (IQR 27 percent). One-way ANOVA indicates all 
operator means are significantly different from each other (p <.05), but 
post-hoc tests reveal service areas supported by operators C, D, E, and F 
are in a homogeneous subset. Seasonal change in revenue is also sta-
tistically greater (p <.05) for Operator E than any of the other operators. 

4.2. Rainfall 

Plots illustrating monthly precipitation and dry season duration across 
the service areas in Ghana, Uganda, and Rwanda are provided in sup-
plemental figures. These metrics do not reveal a clear explanation for the 
observed differences in seasonal revenue variability between service 
areas and operators. The monthly precipitation profiles in all three 
countries are similar yet the service areas in those countries see differing 
degrees of seasonal revenue variability. The service areas in Ghana and 
Rwanda that experience negligible seasonal revenue variability and 
therefore might be expected to align with muted rainfall dynamics are 
instead characterised by pronounced wet and dry seasons. Furthermore, 
we do not find evidence that dry season duration might correlate with 
falls in revenue during the wet season. Service areas in Ghana experi-
ence similar dry season durations but drastically different seasonal rev-
enue variability, and service areas in Rwanda see a gradient of dry season 
durations yet all experience relatively stable seasonal revenues. Whether 
a region experiences relatively wetter or drier seasons, greater differ-
ences in mean rainfall between seasons, or longer dry seasons does not 
appear to influence the degree of observed seasonal revenue variability. 

We do, however, find a notable stratification when instances of dry 
days during the main wet season are examined at the level of individual 
service areas (Fig. 2). Piped water service areas that typically experience 
revenue falls during wet seasons (red dots) appear to be in climate re-
gimes characterised by consistently rainy wet seasons. In climate 

Fig. 1. Average percent change in monthly revenue per waterpoint in individual service areas between chronological dry and wet seasons. Box plot elements: mean 
markers, median centre lines, upper and lower quartile box limits, whiskers for minimum and maximum values within 1.5x IQR, and outlier markers. 
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regimes where instances of 7 and 14 consecutive dry days during the wet 
season are more frequent, such as southern Ghana (panels d and h) and 
Rwanda (panels e and i), service areas appear to experience more stable 
revenue streams year-round (grey dots). This is especially notable when 
longer dry intervals occur during wet seasons (panels h and i). 

4.3. Tariff Level, waterpoint connection Type, and user payment 
approach 

Regression results corresponding to separate GEE models for service 
area clusters of interest are summarised in Table 1. Consistently better 
goodness-of-fit is observed when correlation across time-adjacent re-
cords is represented with an autoregressive correlation matrix. Refer-
ence cases correspond to service areas where only off-premises 
connections and conventional payment approaches are employed with 
tariff levels held constant at the mean value for the cluster. The models 
are constructed such that β values indicate the incremental effect of each 
parameter in relation to the reference case on percent change in monthly 
revenue per waterpoint between chronological dry and wet seasons. 
Tariff level increase is modelled as a main effect. The effects of on- 
premises connections and prepaid credit are modelled as interactions 
with mean-centred tariff level to control for the fact that the parameters 

are typically associated with higher user fees. Since Operator B does not 
utilise conventional payment methods, the reference case in Model 4 is 
based on off-premises connections where mean tariff levels are charged 
and paid for with prepaid credit. The isolated effect of prepaid credit is 
not able to be estimated in models 3 or 4 because prepaid credit pay-
ments are not utilised in the service areas supported by Operator A and 
conventional payments are not utilised in the service areas supported by 
Operator B. 

The estimated effects of the reference cases follow a similar pattern 
as the descriptive statistics. When all service areas are pooled together 
(Model 1), the reference case sees a 13.0 percent seasonal reduction in 
revenue (p <.001). However, seasonal revenue variability is not sig-
nificant (p≥0.05) for operators A and B (models 3 and 4, respectively), 
and operators C, D, E, and F (models 5, 6, 7, and 8, respectively) each 
experience significant reductions in revenue during wet seasons 
(p≤0.006). When service areas supported by the latter group of opera-
tors are clustered together (Model 2), the reference case sees a 30.2 
percent decrease in revenue during wet periods (p <.001). 

Descriptive statistics for tariff levels associated with each operator 
are summarised in Supplemental Table 2. Tariff level increases signifi-
cantly influence seasonal revenue (p≤0.001) for the three operators in 
Uganda (models 6, 7, and 8), further reducing revenue during the wet 

Fig. 2. Instances of consecutive days with no rainfall during main wet season in Ghana, Rwanda, and Uganda (2016–2019 cumulative). Grey markers indicate piped 
water service areas where average revenue variability of less than five percent is experienced between dry and wet seasons. Red markers indicate service areas where 
average seasonal revenue variability of greater than five percent is experienced. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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season. On-premises connections and prepaid credit payments are 
associated with significant revenue increases (p <.05) during the wet 
season for operators D and F (models 6 and 8, respectively). However, 
these results should be regarded with caution because the effects in each 
model are based on less than five percent of the service areas and sea-
sonal transition records that comprise the full study dataset. When all 
records for the operators that experience seasonal revenue variability 
are clustered together (Model 2), tariff level increases and prepaid credit 
payments do not exhibit significant effects on seasonal revenue and on- 
premises connections are associated with a 13 percent revenue reduc-
tion during wet seasons (p =.025). We conclude from these results that 
tariff level adjustments, on-premises connections, and prepaid credit 
payments do not consistently mitigate seasonal revenue variability for 
the operators that experience it. 

5. Discussion 

Our findings underscore three implications for piped water revenue 
planning which can enhance the resiliency of infrastructure investments 
in rural Africa. First, piped water operators can expect to experience 
localised seasonal revenue reductions in areas characterised by consis-
tent wet seasons. Second, seasonal revenue variability should be antic-
ipated in these climate regimes regardless of whether waterpoint 
connections are located on or off premises and of how services are paid 
for. Third, intra-seasonal rainfall variability may lead to greater 
dependence on reliable, professional services in some sub-Saharan re-
gions. We expand on these points here and address the limitations of our 
study. 

Our first research question asks how seasonal rainfall influences 
revenue from user payments for rural piped water services. The results 
we present demonstrate seasonal shifts in rural piped water demand and 
quantify its impact on revenue generation in multiple sub-Saharan 
countries. We find operators that experience seasonal revenue vari-
ability collect on average 30 percent less revenue as demand falls during 
wet periods, the magnitude and direction of which agrees with seasonal 
water consumption patterns of rural households reported in the litera-
ture. Revenue projections that broadly assume consistent volumetric 
demand year-round may lead to shortfalls that threaten sustainability. 
To put the impact of this recurring deficit into perspective, the average 
annual financial loss due to nonrevenue water across sub-Saharan util-
ities is reportedly 34 percent (IBNET, 2020) which leads to substantial 
economic repercussions in the water supply sector (Liemberger and 
Wyatt, 2018). Furthermore, overestimating the ability of rural piped 
water services to generate revenue ultimately undermines the case for 
future investment. This study contributes to a more nuanced and accu-
rate understanding of rural piped water demand and revenue dynamics 
relative to geospatial rainfall patterns, which can aid in effective 
resource allocation. 

This study also informs approaches which might be adopted to 
address seasonal revenue variability. We pose a research question 
regarding the influence of several behavioural determinants on seasonal 
revenue patterns, including tariff level, connection type, and payment 
approach. While controlling for tariff level, we find on-premises con-
nections are associated with similar levels of seasonal revenue vari-
ability as off-premises connections. This implies that upgrading rural 
piped water access from off-site to on-site, though potentially resulting 
in higher unit revenues (Armstrong et al., 2022), may not lead to more 
seasonally stable cash flows. Furthermore, we observe seasonal revenue 
reductions across all payment approaches included in our study and find 
prepaid credit payments are not consistently associated with less sea-
sonal revenue variability than conventional payments. The tariffs in the 
study are based on volumetric water usage rather than fixed fees, which 
prevents examination of whether fixed fee payments stabilise seasonal 

Table 1 
Modelled effects of tariff level increase, on-premises connections, and prepaid 
credit on percent change in monthly revenue per waterpoint between chrono-
logical dry and wet seasons [percent].     

95 Percent 
Confidence 
Interval  

β SE Lower Upper p 

Model 1: All Service Areas (n =
635)       

Reference case 
(intercept)1 

¡13.0 2.0 ¡17.0 ¡9.1 <0.001  

Tariff level increase2 − 2.5 3.3 − 9.0 4.1 0.463  
On-premises 
connections3 

1.0 5.5 − 9.7 11.8 0.853  

Prepaid credit3 6.2 4.7 − 3.1 15.4 0.190 
Model 2: Operators C (GH), D, 

E, and F (UG) (n = 272)       
Reference case 
(intercept)1 

¡30.2 2.5 ¡35.1 ¡25.3 <0.001  

Tariff level increase2 0.5 3.5 − 6.3 7.3 0.883  
On-premises 
connections3 

¡13.1 5.8 ¡24.5 ¡1.6 0.025  

Prepaid credit3 − 8.6 5.6 − 19.5 2.3 0.121 
Model 3: Operator A (RW) (n 
= 328)       

Reference case 
(intercept)1 

− 0.4 2.7 − 5.7 4.8 0.874  

Tariff level increase2 − 3.6 3.4 − 10.2 3.0 0.282  
On-premises 
connections3 

2.4 4.9 − 7.3 12.0 0.631  

Prepaid credit3 – – – – – 
Model 4: Operator B (GH) (n 
= 35)       

Reference case 
(intercept)1 

− 5.2 5.5 − 16.1 5.6 0.343  

Tariff level increase2 46.4 31.6 − 15.5 108.3 0.142  
On-premises 
connections3 

− 234.8 292.9 − 808.8 339.2 0.423  

Prepaid credit3 – – – – – 
Model 5: Operator C (GH) (n 
= 189)       

Reference case 
(intercept)1 

¡28.4 3.2 ¡34.8 –22.1 <0.001  

Tariff level increase2 − 1.6 6.1 − 13.6 10.5 0.796  
On-premises 
connections3 

− 20.9 12.5 − 45.4 3.5 0.094  

Prepaid credit3 1.1 18.5 − 35.2 37.4 0.952 
Model 6: Operator D (UG) (n 
= 10)       

Reference case 
(intercept)1 

¡7.1 0.0 ¡7.1 7.1 <0.001  

Tariff level increase2 ¡24.6 0.0 ¡24.6 ¡24.6 <0.001  
On-premises 
connections3 

54.0 0.0 54.0 54.0 <0.001  

Prepaid credit3 32.2 0.0 32.2 32.3 <0.001 
Model 7: Operator E (UG) (n =

56)       
Reference case 
(intercept)1 

¡39.5 3.9 ¡47.2 ¡31.8 <0.001  

Tariff level increase2 ¡10.2 2.5 ¡15.1 ¡5.2 <0.001  
On-premises 
connections3 

5.4 6.2 − 6.8 17.5 0.387  

Prepaid credit3 2.5 4.4 − 6.1 11.2 0.565 
Model 8: Operator F (UG) (n =

17)       
Reference case 
(intercept)1 

¡38.4 13.9 ¡65.7 ¡11.1 0.006  

Tariff level increase2 ¡27.7 8.1 ¡43.5 ¡11.9 0.001  
On-premises 
connections3 

55.3 27.0 2.4 108.1 0.040  

Prepaid credit3 11.5 1.1 9.4 13.7 <0.001  

1 Reference cases correspond to service areas where only off-premises con-
nections and conventional payment approaches are employed with tariff levels 
held constant at the mean value for the cluster. 

2 Tariff level increase is modelled as a main effect. 

3 On-premises connections and prepaid credit parameters are modelled as 
interactions with mean-centred tariff level. 
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revenue as prior evidence suggests (Armstrong et al., 2021). Revenue 
dynamics in this study are therefore expected to track with seasonal 
water demand with the most noticeable effect of payment approach 
being a temporal offset based on whether payments occur prior to, at the 
point of, or at some delayed frequency from water collection. It is 
plausible that users adjust seasonal water collection behaviours based on 
the frequency and way payments for services are collected, especially if 
they prepay days or weeks in advance of rainfall events. Furthermore, 
operators may make seasonal adjustments to their billing and payment 
collection practices depending on the modality by which users pay for 
services. Any of these payment and collection behaviours might inten-
sify or mitigate seasonal revenue reductions. However, we do not find 
evidence to suggest the observed payment approaches have a predict-
able effect on seasonal revenue. 

There may be a socioeconomic explanation for these inconsistent 
effects, which our dataset does not permit us to explore and is an area for 
future research. The seasonal water usage and payment behaviours of 
rural households in the observed piped water service areas may be 
influenced by a variety of factors such as cultural norms, education level, 
spending power and priorities, and perceptions of affordability. These 
factors likely interact with each other, and their influence may evolve 
over time. Yet even without thorough understanding of the underlying 
behavioural determinants of seasonal revenue variability, our findings 
motivate a close examination of the revenue assumptions that underpin 
widescale, capital-heavy investments in rural, piped on-premises con-
nections and prepaid credit systems. 

Our analysis indicates broad interventions aimed at incentivising 
water demand to reduce or eliminate the seasonal revenue threat to 
rural piped services may prove unsuccessful. Alternatively, ensuring 
availability of adequate financial resources throughout periods of 
reduced demand may the most effective way to mitigate the impact of 
seasonal revenue variability. We briefly highlight several promising 
approaches to this end, including cash flow planning, maintaining cash 
reserves, adjusting tariff rates on a seasonal basis, pooling financial risk, 
administering supply-side subsidies, and offering flexible loan repay-
ment terms. 

Cash flow planning is a logical and fundamental approach. Unlike 
financial shocks resulting from asset failures or natural disasters which 
are infrequent and somewhat unexpected, seasonal revenue variability 
occurs at a regular frequency and can be characterised. Planning can 
cushion shocks caused by interannual variability, and bulky expendi-
tures such as capital maintenance projects or hiring new staff can be 
prioritised and sequenced to align with anticipated financial constraints. 

Cash reserves are also generally recommended to compensate for 
revenue volatility of municipal water services (AWWA, 2018). However, 
the feasibility of rural African operators building and maintaining a 
reserve fund is low given the challenging economics (Hope et al., 2020) 
and recognised cost recovery constraints (McNicholl et al., 2019). 

Seasonal tariff rate adjustments may be an effective financial man-
agement strategy recognising tariff margins during dry seasons can 
compensate for reduced demand during wet seasons (Andres et al., 
2021). Although tariff level increases correlate with greater seasonal 
revenue falls for some operators in this study, our results do not present 
conclusive evidence that tariff variations consistently intensify or miti-
gate seasonal revenue variability. We therefore recommend tariff mod-
ifications be considered with caution. 

Financial risk-sharing mechanisms such as insurance and derivatives 
are also sometimes adopted by water utilities in high-income countries 
to mitigate weather-related revenue threats (Alliance for Water Effi-
ciency, 2014) and are gaining interest in rural areas of low- and middle- 
income countries (Koehler et al., 2018). Rainfall index-based crop in-
surance, which is conceptually similar and utilises a blended finance 
approach to mitigate climate risk for smallholder farmers, has also been 
applied in various forms across sub-Saharan Africa (Miranda and 
Mulangu (2016)). We observe revenue variability in some service areas 
but not in others suggesting financial risk may be pooled and reduced in 

an investment portfolio at some geographic scale. Although seasonal 
revenue variability is not eliminated when all observed service areas are 
combined (Model 1), there is less overall reduction in average revenue 
during wet seasons (13 percent overall revenue reduction compared to 
up to 40 percent experienced by individual operators). 

Supply-side subsidies provided directly to service providers on a 
flexible or seasonal basis can provide a buffer against seasonal revenue 
shocks as well. Our results suggest this may be more effective at sta-
bilising seasonal revenue than demand-side subsidies which aim to in-
crease household connections or reduce the price users pay for water. 

Finally, flexible loan terms, where repayments are based on per-
centage of water sales and therefore adjust to seasonal variations, can 
allow operators to avoid default during periods of reduced demand. This 
approach has been adopted with apparent success by the Cambodia 
Revenue Finance Facility (The Stone Family Foundation, 2018). 

Our final research question asks which rainfall metrics are useful for 
characterising seasonal revenue variability. We find evidence that rural 
piped water revenue, hence demand for services, is relatively stable 
where instances of dry days during the wet season are more common. 
This type of intra-seasonal variability is a pronounced and localised 
rainfall feature across Africa (Kendon et al., 2019, Wainwright et al., 
2021). Hydrologic instability is traditionally recognised as a threat to 
water security because it complicates the ability of water managers to 
ensure availability of adequate resources to all populations (Grey and 
Sadoff, 2007). Our findings further link rainfall patterns to water use and 
sustainability outcomes and demonstrate the importance of considering 
such patterns at local scales. The piped water operations observed in this 
study, particularly in southern Ghana and Rwanda, appear to exemplify 
a virtuous feedback loop of dependable services leading to consistent 
demand and revenue from user payments. However, such cases are rare 
in rural Africa and poor functionality with periods of downtime lasting 
for weeks is more the norm than the exception (Tincani et al., 2015). 
Where availability of seasonal rain-fed water sources are unpredictable, 
rural water users are not able to buffer daily water consumption from a 
secondary rain-fed source and are likely dependent on professional 
services. In an increasingly uncertain global climate, it is thus impera-
tive that rural water services remain functionally reliable, financially 
viable, and affordable for all. 

We identify several limitations to our study. The first is that our 
analysis is representative only at the scale of operations reflected in the 
multi-country dataset. Furthermore, the operational conditions of the 
individual piped water service areas and operators are not fully under-
stood and therefore cannot be controlled via regression. Important 
covariates such as reliability of scheme performance, presence and 
condition of alternative water supply infrastructure, and changes in 
social and economic conditions are unknown. Such exogenous effects 
are more likely to manifest locally than regionally, introducing biases of 
unknown magnitude and direction. We therefore cannot rule out the 
possibility that observed differences in seasonal revenue variability 
across service areas are a result of contextual factors or operator-specific 
efficiencies. The original data are also prone to inadvertent recording 
errors and manipulation which can lead to imprecise or inaccurate re-
sults. This has been addressed through a systematic internal data vali-
dation and cleaning process involving dispersion and outlier analysis as 
described in the methodology. Lastly, the rainfall data are downscaled 
from the CHIRPS dataset to align with frequency and geolocation of 
operator data. Although the satellite-based estimates are validated 
against rain gauge data, ground truth observations are not available for 
the exact study locations. 

6. Conclusion 

Local revenue generation underpins delivery of drinking water ser-
vices in rural Africa yet is threatened by seasonal rainfall and water 
usage patterns. We present evidence that intra-seasonal rainfall analysis 
can enhance rural piped water revenue planning by offering localised 
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insight into water demand dynamics and revealing where climate vari-
ability may increase dependence on reliable services. The observed 
seasonal threat to rural piped water revenue in Ghana, Rwanda, and 
Uganda varies geospatially and appears to decrease with frequency of 
dry intervals during the wet season, which is a metric of rainfall vari-
ability. Our findings suggest piped water operators in rural Africa can 
expect to experience seasonal revenue reductions, an average of 30 
percent across our dataset, in climate regimes where wet season rainfall 
is consistent. However, seasonal piped water revenue and hence demand 
for services appears stable where rainfall patterns are more erratic. On- 
premises connections do not consistently prevent falling demand and 
revenue during wet months when compared to off-premises connections 
at equivalent tariff levels. Likewise, we observe similar seasonal revenue 
falls among services that are paid for with traditional pay-as-you-fetch 
and monthly billing approaches as with prepaid credit. 

Further research is needed to understand the contextual and 
behavioural determinants that influence rainfall-related revenue vari-
ability beyond those which were evaluated in this study, as well as how 
and why the phenomenon evolves over time. Future studies should 
explore rainfall and revenue variability at intra-seasonal scales, recog-
nising climate impacts are likely to result from nuanced shifts in rainfall 
patterns as well as extreme weather events. 
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