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Abstract

The purpose of this study was to evaluate the historical skill of models in the

Coupled Model Intercomparison Project Phase 5 (CMIP5) in two regions of

Ethiopia: northwestern Ethiopia and the Awash, one of the main Ethiopian

river basins. An ensemble of CMIP5 models was first selected so that

atmosphere-only (Atmospheric Model Intercomparison Project, AMIP) and

fully coupled simulations could be directly compared, assessing the effects of

coupled model sea surface temperature (SST) biases. The annual cycle, sea-

sonal biases, trends, and variability were used as metrics of model skill. In the

Awash basin, both coupled and AMIP simulations had late Belg or March-May

(MAM) rainy seasons. In connection to this, most models also missed the June

rainfall minimum entirely. Northwest Ethiopia, which has a unimodal rainfall

cycle in observations, is shown to have bimodal seasonality in models, even in

the AMIP simulations. Significant AMIP biases in these regions show that

model biases are not related to SST biases alone. Similarly, a clear connection

between model resolution and skill was not found. Models simulated tempera-

ture with more skill than rainfall, but trends showed an underestimation in

Belg (MAM/April-May (AM)) trends, and an overestimation in Kiremt or July-

September (JAS/June-September (JJAS)) trends. The models which were

shown to have the most skill in a range of categories were HadGEM2-AO,

GFDL-CM3, and MPI-ESM-MR. The biases and discrepancies in model skill

for different metrics of rainfall and temperature found in this study provide a

useful basis for a process-based analysis of the CMIP5 ensemble in Ethiopia.
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1 | INTRODUCTION

Africa's vulnerability to climate change is widely
acknowledged to be higher than most other regions

(Niang et al., 2014). This vulnerability can be partitioned
into exposure due to the physical changes projected in
the climate and the ability to adapt to such changes.
Africa's high share of vulnerability is in stark contrast to
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its contribution to global emissions of greenhouse gases
(AFDB, 2011).

The connection between climate and humanitarian
disaster has focused on Ethiopia more than almost any
other country in Africa, partly because of a number of
drought events that have ended in famines which have
required humanitarian intervention (Conway and Schipper,
2011). A strong connection between the health of the Ethio-
pian economy and climate has also been made in the past
(Grey and Sadoff, 2007) although the nuances of this con-
nection are complicated (Lewis, 2017; Borgomeo et al.,
2018). A number of studies have highlighted the need to
understand the meteorology of drought events, the spatial
heterogeneity of such events, and what adaptation might be
necessary to reduce future risk (Viste et al., 2013; Lewis,
2017). Climate models are key to analysing the projected
risk of climate change, including droughts. In most regions
of Africa there has been investment in the analysis of global
climate models, for example in southern Africa (Dieppois
et al., 2015; Munday and Washington, 2017; Pohl et al.,
2017; Munday and Washington, 2018), East Africa (Otieno
and Anyah, 2013; Yang et al., 2015; Hirons and Turner,
2018; Ongoma et al., 2018) and the Sahel (Cook and Vizy,
2006; Vizy et al., 2013; Martin et al., 2014; Monerie et al.,
2017). However the ability of GCMs to reproduce the histori-
cal climate of Ethiopia has not been widely studied, possibly
because of the unique climate characteristics of the country
such as the complex rainfall seasonality which render it dis-
tinct fromEast Africa to the south, and the Sahel to the west.
The model studies that have been done, focus on a particu-
lar rainy season alone (Li et al., 2016), or a smaller sub-set of
models (Diro et al., 2011; Degefu et al., 2017). Establishing
the fidelity of global climate models in different regions of
Ethiopia, and for different seasons could yield strategic
information about why models can or cannot simulate the
climate, and teleconnections. This is an important step
towards a better constrained set of future climate projec-
tions. In turn, thiswill increase the possibility of better adap-
tive capacity and possibly reduce negative exposure to the
effects of climate change.

The purpose of this study is to identify global climate
models from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) that most accurately reproduce rainfall
and temperature, but also to characterize patterns of skill in
the ensemble of models we are using. We are doing this in
two regions of Ethiopia (Figure 1), namely: (a) the north-
west of the Rift Valley (Northwest Ethiopia) and (b) one of
the main Ethiopian river basins, the Awash basin. Annual
rainfall masked for these two regions from the Climate
Hazards Group InfraRed Precipitation with Station dataset
(CHIRPS) are shown in Figure 1. We chose Northwest Ethi-
opia, as its climate is distinct from other parts of East
Africa, with rainfall seasonality which is closer to the

unimodal distribution of the Sahel. The Awash basin has
rainfall seasonality which is on the margin of the bi-modal
East African and unimodal Sahelian distributions and was
chosen because of its significance to water security in the
region (e.g., REACH, 2015; https://reachwater.org.uk). The
basin experiences droughts and floods which frequently
challenge water security of communities and various sec-
tors; changes to the climate are expected to exacerbate the
current water insecurity situation. Climate model evalua-
tions are therefore targeting impact studies on water alloca-
tion for different sectors through understanding future
water availability projections.

There are four parts to the model comparisons. First,
there is an inspection of individual model climatologies
relative to the reference dataset. Second, the major rainy
seasons are identified and average annual and seasonal
biases are calculated. Agreement in trend sign and magni-
tude is then assessed for the same seasons and annual
averages. Finally, variability in the full time series is
assessed by using Taylor diagrams, which combine stan-
dard deviation and time series correlation with a refer-
ence dataset (Taylor et al., 2012). The values of the skill
score from the Taylor diagrams are not used as thresh-
olds, but rather to identify where models are clustered,
and differences between the Atmospheric Model
Intercomparison Project (AMIP) and coupled ensembles.
From these comparisons, a reduced ensemble is suggested
for process-based evaluation (James et al., 2015).

2 | BACKGROUND: ETHIOPIAN
CLIMATE

Ethiopia sits at the juncture of the Sahel and East Africa,
and it is affected by numerous climatic zones: hot low-
lands to the east, cooler and wetter highlands to the west,
and numerous large river basins. Ethiopia has three sea-
sons: Kiremt (June–September), Bega (October–January),
and Belg (February–May) (Shanko and Camberlin, 1998).
However, the intensity and exact timing of these seasons
varies regionally. The complexity of the Ethiopian cli-
mate is reflected in the state of understanding of its
future projections; the fifth intergovernmental panel on
climate change (IPCC) assessment report (AR5) states
that there is a broad range of changes and a large degree
of model disagreement (Niang et al., 2014).

Complexity is part of the reason the Ethiopian climate
is understudied. Cheung et al. (2008) examined rainfall
trends by splitting Ethiopia up into 13 different water-
sheds and found a wide range of both negative and posi-
tive trends. Flohn (1987) and Nicholson (1986) showed
that Ethiopian droughts from the 1950s to 1980s were
part of a large-scale pattern of African drought in which
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the latitude band from West Africa to Ethiopia would
face concurrent drought. Conversely, the 2009 drought, a
dry Belg followed by a dry Kiremt, in Ethiopia was differ-
ent, with extreme dryness extending from Ethiopia to the
Democratic Republic of the Congo (Viste et al., 2013).
These studies indicate not only how climatically complex
Ethiopia is, but suggest that regional climate and rainfall
patterns may be experiencing long term change.

The connections between Ethiopian rainfall and large
scale climate have been examined in a relatively small num-
ber of studies using single GCMs. Jury and Funk (2013) used
the GFDLmodel and Degefu et al. (2017) used two different
versions of the HadGEM2model. Degefu et al. (2017) found
that there are teleconnections with the Nino3.4 region, the
Indian Ocean Dipole (IOD), and central Indian Ocean sea
surface temperatures (SSTs) in observations, but found that
teleconnections simulated by themodels weremuchweaker
than observations. They also found that the resolution of the
models did not impact on the relative strength of these
teleconnections. Jury and Funk (2013) were investigating
long term historical trends, and future trends, finding that
warmer western Indian Ocean SSTs, and a westward shift in
the Walker circulation are both important drivers of drying
in Ethiopia, but that the orographic effect of the highlands
lessens the severity of the drying compared to surrounding
lowland regions. The complex teleconnections and varying
model skill levels indicate that using models for future pro-
jections without first assessingmodel fidelity is risky.

A comparison of the full ensemble of CMIP5 models
has been done by Li et al. (2016) for historical period
Kiremt (June-September (JJAS)) rainfall. They deter-
mined that if models were grouped by grid-spacing that a
threshold of 2� could differentiate models better able to
capture the annual cycle of rainfall in this season. This
threshold does lead to a sub-group of models which can
better capture the annual cycle, but the ability of models
to reproduce observed variability, and trends outside of
the JJAS season were not addressed.

3 | MODELS, REANALYSIS, AND
MEASUREMENTS

Both historical, fully coupled simulations and AMIP simula-
tions from the CMIP5 ensemble (Taylor et al., 2012) are
used in this assessment. AMIP runs are analysed since they
preclude the influence of SST bias. Our CMIP5 subset is
therefore limited to models run in both configurations and
for the period 1981–2005 which is common to all data sets.
The r1i1p1 ensemble member for each model is used. A
summary of the 24 models examined is included in Table 1.

Our primary reference datasets are the CHIRPS mer-
ged satellite and rain gauge dataset (Funk et al., 2015),

and the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al.,
2011). CHIRPS is available at a 0.05� × 0.05� resolution
and uses an amalgamation of satellite retrieved rainfall
and rain gauge data in Africa. CHIRPS incorporates pub-
licly available and private station data from meteorologi-
cal agencies in sub-Saharan Africa, and therefore
includes information from a higher number of gauges
than other datasets. This is beneficial in a data sparse
region, and this dataset has been shown to perform well
in Eastern Africa compared to gauge data and other mer-
ged rainfall datasets (Dinku et al., 2018). We also use
CRU TS3.22 rainfall (Harris et al., 2014) observations to
assess the agreement between reference data sets. We do
not use rainfall from reanalysis datasets because their
biases can be very high compared to observations (Tsidu,
2012), and therefore we are relying on rainfall observa-
tions that incorporate gauges.

We use temperature from the ERA-Interim reanalysis
(0.75� × 0.75� grid spacing). As with rainfall, we also
include comparisons with other temperature datasets
such as National Centers for Environmental Prediction
reanalysis (NCEP2), and Climate Research Unit (CRU)
TS 3.22 temperature fields (Kanamitsu et al., 2002; Harris
et al., 2014). ERA-Interim and CRU have very similar
temperature climatologies, with NCEP2 being cooler
than both, and having a May rather than June maximum.
Due to the agreement between ERA-Interim and CRU,
along with its higher resolution than that available from
NCEP2, we use ERA-Interim as the reference for bias dif-
ferences, trends and variability but compare model tem-
perature climatologies to all three datasets.

4 | RESULTS

4.1 | Rainfall

4.1.1 | Rainfall: Annual cycle

Rainfall climatologies for models and observations over
the Awash basin are shown in Figure 2 (individual model
annual cycles are shown in Figure A1). While the mod-
elled ensemble averages do show a weak bimodal season-
ality, there are some important discrepancies in the
averages, and a large spread in ensemble members. In
the AMIP ensemble, there is large overestimation in both
rainy seasons among a number of models. While
most models include a distinct JAS rainy season, the
March-May (MAM) rainy season is entirely missed by
four out of the 24 models. It is the lack of bimodal nature
of some climatologies, due to very low rainfall in MAM,
accompanied by a large overestimation of MAM rainfall
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in others, which allows the ensemble mean to be near to
observed rainfall in MAM. In the coupled ensemble, the
MAM rainy season is not evident in a number of models,
and the ensemble resembles a unimodal distribution. All
but one model (MIROC5) miss March rainfall, and this
model greatly overestimates the March rainfall while rep-
roducing the relative seasonality of rainfall quite well.

The separation between the two rainy seasons of low
June rain rates is not captured by the AMIP ensemble
average. This is a combination of models having a pro-
longed JJAS season (five out of 24), and others with a del-
ayed MAM rainy season (six out of 24). The AMIP
ensemble also has a main rainy season that extends to
October. Although this is less pronounced in the coupled
ensemble, model rainy seasons are shifted by 1 month to
varying degrees with September having a rain rate almost

as high as August. As with the AMIP ensemble average,
the June minimum is not dry in the coupled ensemble.

The observed annual cycle of Northwest Ethiopia
(Figure 3a) differs from that of the Awash basin in that
there is no distinct dry period between two rainy sea-
sons; it is unimodal with the main season covering June
to September and an onset in April/May. Maximum
monthly rain rates can reach 6 mm�day–1 in observa-
tions, compared to the 4 mm�day–1 in the Awash basin.
Northwest Ethiopia and the Awash basin do have a sim-
ilarly dry period from November to February with
monthly rain rates below 1 mm�day–1. The annual cycles
of the model ensembles for Northwest Ethiopia (individ-
ual model annual cycles are shown in Figure A2) have
similar characteristics to those for the Awash basin with
higher rain rates throughout the year, while the

TABLE 1 The 24 CMIP5 models included in this study

Model Institution
Horizontal
resolution

Vertical
levels

ACCESS1-0 CSIRO (Commonwealth Scientific and Industrial Research Organisation,
Australia), and BOM (Bureau of Meteorology, Australia)

1.25 × 1.875 38

ACCESS1-3 CSIRO 1.25 × 1.875 38

BNU-ESM Beijing Normal University 2.7906 × 2.8125 26

CanCM4 Canadian Centre for Climate Modelling and Analysis 2.7906 × 2.8125 35

CCSM4 National Center for Atmospheric Research (NCAR) 0.9424 × 1.25 26

CESM1-CAM5 NCAR 0.9424 × 1.25 26

CMCC-CM Euro-Mediterranean Center on Climate Change 0.7484 × 0.75 31

CNRM-CM5 Centre National de Recherches Meteorologiques 1.4008 × 1.40625 31

CSIRO-Mk3-6-0 CSIRO in collaboration with the Queensland Climate Change Centre of Excellence 1.8653 × 1.875 18

FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS,
Tsinghua University

2.7906 × 2.8125 26

GFDL-CM3 Geophysical Fluid Dynamics Laboratory 2 × 2.5 48

GISS-E2-R NASA Goddard Institute for Space Studies 2 × 2.5 40

HadGEM2-AO Met Office Hadley Centre 1.25 × 1.875 38

IPSL-CM5A-LR Institut Pierre-Simon Laplace (IPSL) 1.8947 × 3.75 39

IPSL-CM5A-MR IPSL 1.2676 × 2.5 39

IPSL-CM5B-LR IPSL 1.8947 × 3.75 39

MIROC5 University of Tokyo, National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology

1.4008 × 1.40625 40

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 1.8653 × 1.875 47

MPI-ESM-MR MPI-M 1.8653 × 1.875 95

MRI-CGCM3 Meteorological Research Institute 1.12148 × 1.125 48

NorESM1-M Norwegian Climate Centre 1.8947 × 2.5 26

bcc-csm1-1 Beijing Climate Center, China Meteorological Administration (BCC) 2.7906 × 2.8125 26

bcc-csm1-1-m BCC 2.7906 × 2.8125 26

inmcm4 Institute for Numerical Mathematics 1.5 × 2 21

Note: HadGEM2-AO is listed here and is used as the reference throughout, but for the AMIP simulation the HadGEM2-a model is used. The same convention
has been used for CanAM4 which is an AMIP configuration, but both coupled and AMIP versions are labelled as CanCM4 in this study.
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FIGURE 1 Annual average rainfall (mm�day) in the (a) Awash basin and (b) Northwest Ethiopia from CHIRPS (1981–2005) [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Awash basin annual rainfall cycles for (a) AMIP simulations and (b) coupled simulations from CMIP5 with observations.

Averages of 1981–2005 rain rates (mm�day–1), averaged over the masked Awash basin region shown in Figure 1a. Model annual cycles are solid

lines, while observed annual cycles are dashed lines. (c) Biases in AMIP and coupled simulation rainfall in key rainy seasons and annual average

rainfall in the Awash basin. The relative differences ([Model−Chirps]/[Chirps]) between model and Chirps rainfall are shown as either drier

negative grid spaces or wetter positive grids. Zero indicates perfect agreement. The bottom three rows show atmospheric simulation biases while

the upper three rows show coupled model biases [Colour figure can be viewed at wileyonlinelibrary.com]
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seasonality of the annual cycles in the observed datasets
are quite different in the two regions.

The difference between the Northwest Ethiopian AMIP
(Figure 3a) and coupled (Figure 3b) simulations highlights
the problematic simulation of MAM rainfall. In AMIP sim-
ulations, some models vastly overestimate rainfall and have
a distinct MAM or MAMJ season and the AMIP ensemble
average overestimates rainfall in this season. The coupled
model ensemble average has models which both over-
estimate and underestimate April–May rainfall. Some miss
this onset season entirely, and others have a distinctly
bimodal annual cycle leading to the ensemble average
matching the observations well in this season.

Unfortunately, this means that nearly 40% of AMIP
model simulations have a distinctly bimodal rainfall dis-
tribution. For the majority models (six out of nine) with
this bimodal distribution, the driest summer month is
July which should be one of the wettest months of the
year. BNU-ESM, CCSM4, and bcc-csm1-1-m have
improved coupled simulations but a dry July is still a fea-
ture in CESM-CAM5, NorESM1-M, and bcc-csm1-1. The
coupled ensemble has less of a MAM bias and less of an
October–November bias but JJAS rain rates are too low.

In selecting skilful models with the annual cycle as a
metric, biases in rainfall are not prioritized as much as the
annual cycle reproducing the differentiation between the
onset and main rainy season, and the relative rainfall
between the two seasons, and in particular the existence
of a MAM season. A dry June was also a criterion for the
Awash basin. These criteria were applied to both the
AMIP and coupled simulation of each model; a model
which meets the criteria in the AMIP run but does not in
the coupled run is not selected and vice versa. The models
which perform the best in this category are: MPI-ESM-LR
and MPI-ESM-MR, with GFDL-CM3, with HadGEM2-AO
also simulating the seasonality of both regions. In the
Awash basin ACCESS1-0 also performs well, while in
Northwest Ethiopia CMCC-CM preserves the relative rain-
fall levels in its annual cycle in both simulations.

4.1.2 | Rainfall: Regional biases

Rainy seasons identified from the observed climatologies
shown above, along with annual average biases are exam-
ined in Figures 2c and 3c for the Awash basin and North-
west Ethiopia, respectively. From the annual cycles we
have defined the Belg rainy season as MAM for the
Awash basin, and AM in Northwest Ethiopia. We have
defined the Kiremt rainy season as JAS in the Awash
basin and JJAS in Northwest Ethiopia. Annual average
biases are also shown in Figures 2c and 3c, but dry season
biases are not included.

In the Awash basin average biases, there is a consistent
dry bias in coupled MAM while both wet and dry biases
are apparent in AMIP MAM. Most models have a drier
coupled MAM than AMIP MAM, with some showing little
change, generally those that are already dry. GFDL-CM3
becomes slightly wetter having an AMIP relative differ-
ence of −0.49 to the CHIRPS rainfall rate, compared to the
coupled relative difference of −0.43. Otherwise, the only
model that has a wetter coupled MAM than AMIP MAM
is MIROC5 having an AMIP relative difference of −0.55
and a coupled difference of 1.25. Applying a threshold of
relative difference between −0.50 and 0.50 for annual and
seasonal biases in the AMIP and coupled simulations only
five models are accepted: CNRM-CM5, GFDL-CM3,
HadGEM2-AO, MPI-ESM-LR, and MPI-ESM-MR.

Conversely, for Northwest Ethiopia, there are system-
atic wet biases in the April-May (AM) season for AMIP
simulations which are reduced in the coupled simulations.
In AMIP simulations 14 out of 24 models are wetter with
a relative difference over 0.30 with 7 models having a rela-
tive difference between 0.90 and 1.50. In coupled simula-
tions seven out of 24 models are wetter with a relative
difference over 0.30 with two models having relative dif-
ferences between 0.90 and 1.50. This is a reiteration of the
overestimation in the onset rainy season shown in the
annual cycle. Interestingly models with dry AMIP AM still
have dry coupled AM, but the magnitude of the dry biases
does not become consistently drier. This is even the case
for models with relatively small biases, such as inmcm4.
This is the case because referring back to the climatol-
ogies, the main decrease in rainfall between AMIP and
coupled onset seasons is during March, rather than April
or May. It is also the case that the JJAS season tends to be
relatively dry in many models in both AMIP and coupled
simulations, due in part to the dry July bias. Some models
stand out for their particularly strong biases: MIROC5 is
too wet in all selected timeframes, IPSL-CM5B-LR is too
dry in AMIP AM and gets drier in coupled simulations,
and finally CSIRO-Mk3-6-0 stands out as the AM season
has a strong wet bias in both sets of simulations. There are
however a number of models with very small biases. These
are CMCC-CM, GFDL-CM3, HadGEM2-AO, IPSL-CM5A-
MR, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and
inmcm4. All of these models have a relative difference of
between −0.5 and 0.5 compared to CHIRPS averages,
except for HadGEM2-AO which has a relative difference
of 0.53 in its AMIP AM average.

4.1.3 | Rainfall: Trends

Trend calculations are based on a simple linear regres-
sion of total seasonal averages for the period 1981–2005.
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Trend comparisons in rainy seasons and the annual aver-
ages for both regions are shown in Figure 4, while all
observed trends are summarized in Table 2. The goal of
this metric is to show which models have spurious trends
which might lead to a strong, but unrealistic signal of
future change. Observed trends are small and mostly not
statistically significant even at a 0.1 level. For CHIRPS,
the Awash basin annual average trend is small and posi-
tive (0.004 mm�day–1�year–1, p = .437), the MAM trend is
negative (−0.021 mm�day–1�year–1, p = .135), and the JAS
trend is positive (0.033 mm�day–1�year–1, p = .090), and
statistically significant at a 0.1 level. CRU trends are
slightly larger than CHIRPS (−0.051, p = .007 in MAM;
0.050, p = .020 in JAS) and are statistically significant at
a 0.1 level in both these seasons. For Northwest Ethiopia
the trend signs are the same as those for the Awash basin
(annual: 0.006 mm�day–1�year–1, p = .218; AM:
−0.007 mm�day–1�year–1, p = .622; JJAS: 0.017 mm�day–
1�year–1, p = .191) and none of the trends are statistically
significant at the 0.1 level for either CHIRPS or CRU.
Due to the fact that there is a disagreement between
CHIRPS and CRU, and the fact that most observed trends
are not significant, we are highlighting models with
trends that are statistically significant and large.

In both regions, models generally experience trends
that are too large in the onset season (MAM for the
Awash basin and AM for Northwest Ethiopia) in AMIP
simulations, 10 for the Awash basin but 16 for Northwest
Ethiopia. For the Awash basin five out of these 10 models
have the same trend sign as CHIRPS and are therefore
exhibiting too much drying. These models are
ACCESS1-0, CSIRO-Mk3-6-0, MIROC5, MRI-CGCM3,
and bcc-csm1-1-m. CCSM4 is the only model with a
strong positive trend towards higher rain rates. For JAS
in the Awash basin, where the CHIRPS trend is statisti-
cally significant, most AMIP models have a positive trend
but most are too weak and not statistically significant at
the same level. Models with the largest trends in AM for
Northwest Ethiopia are the same as for Awash basin
MAM trends, but the agreement in JAS/JJAS for the two
regions is quite different. It is harder to comment on the
JJAS season for Northwest Ethiopia as the observed
trends are not significant.

Coupled trends differ between the two regions for
both seasons. Northwest Ethiopia coupled trends are rela-
tively similar in magnitude to the small CHIRPS trends,
while in the Awash basin the two rainy seasons almost
all have smaller trend magnitudes than CHIRPS. The
positive JAS trend in CHIRPS is statistically significant,
but this is not the case for all but the HadGEM2-AO
model.

Discriminating among models based on trend is diffi-
cult, but might benefit from breaking the study regions

down further as shown by Viste et al. (2013) and Cheung
et al. (2008). While such a regional breakdown is beyond
the scope of this study, and the coarse resolution of most
models, we make a selection based on models which do
not have large statistically significant trends when the
observed trend is not or are not of a different sign when
the observed trends are significant. It must be acknowl-
edged that the period over which we are examining
trends is short. However, a similar period has been the
subject of a great deal of study in East Africa due to the
fact that models have spurious trends (Rowell et al.,
2015). To certify that individual extreme years were not
influencing our reference trends we applied a boo-
tstrapping method to determine how robust these trends
are. Single years of data were removed and the trends rec-
alculated to create a distribution of trends. The standard
deviation of all trends was an order of magnitude smaller
than the average trend in cases where the original full
period trend was statistically significant, indicating that
sensitivity to individual years in this short period is not
particularly high.

The most weight is placed on the rainy season trends.
For the Awash basin these models are CNRM-CM5,
GFDL-CM3, IPSL-CM5B-LR, and MPI-ESM-MR. For
Northwest Ethiopia, the models that fulfil the criteria are
CESM1-CAM5, CNRM-CM5, GFDL-CM3, GISS-E2-R,
IPSL-CM5B-LR, and NorESM1-M.

4.1.4 | Rainfall: Variability

Ethiopia has been strongly influenced by rainfall variabil-
ity, in the form of both droughts and flooding. To assess
this aspect of model skill we use Taylor diagrams to
examine model standard deviation, and correlation rela-
tive to CHIRPS, combined to create a skill score
(Figure 5). All months of the year are considered in this
metric. We further constrain using standard deviation
margins, set at 25% as shown in Figure 5, as we are more
concerned with a model's ability to capture the scale of
characteristic variations rather than the timing of varia-
tions, and correlating coupled model time series with
observed time series is not a meaningful comparison due
to free running SSTs. Our selection of a root mean square
error (RMSE) threshold of 1.5 is arbitrary, and the selec-
tion is based more on the positioning of models relative
to the model cluster and similar skill in both AMIP and
coupled simulations.

The distribution of models in the AMIP and coupled
simulations is not dissimilar for the Awash basin. There is
a collection of models that fall inside the 1.5 contour for
both ensembles, nine AMIP and 10 coupled. In the Awash,
it is more common for coupled model simulations to have
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lower standard deviations at the same level of correlation
as AMIP simulations. For the Awash basin models that fall
within the 1.5 contour in both configurations, and fall
within the 25% range from the reference standard deviation
are CanCM4, HadGEM2-AO, MPI-ESM-LR, and MPI-
ESM-MR. For Northwest Ethiopia, there are actually more
models which fall within the same skill contour in the
coupled simulations (13) than AMIP simulations (11). The
spread in standard deviations is higher in AMIP than
coupled models as well; the coupled simulations are gener-
ally more tightly clustered. Models which are within the
1.5 contour for both simulations and within the 25% stan-
dard deviation contours are ACCESS1-0, HadGEM2-AO,
MPI-ESM-LR, and MPI-ESM-MR with the coupled simula-
tion of GFDL-CM3 just outside the 1.5 contour. Models
that are consistently outliers for both regions are
ACCESS1-3, MIROC5, and NorESM1-M.

4.1.5 | Rainfall summary

A summary of the evaluation for CMIP5 rainfall in the
Awash basin is shown in Table 3). We combined the eval-
uation of both AMIP and coupled simulations for each
metric. Comparing the difference between the perfor-
mance of simulations without the effects of a freely run-
ning ocean means that the ability of the atmospheric
model to reproduce the dynamics of regional climate
accurately and the potential effects of SST biases are con-
sidered. Only MPI-ESM-MR performs well in all

categories (annual cycle, bias, trend, and variability), but
there are models that perform well in three out of four of
the categories: GFDL-CM3, HadGEM2-AO, and MPI-
ESM-LR. The summary of CMIP5 model skill for North-
west Ethiopia (Table 4) shows that a number of the
models that have skill in the most categories are the same
as for the Awash Basin. GFDL-CM3 appears in all four
categories while HadGEM2-AO and MPI-ESM-MR per-
form well in three out of four categories.

The annual cycles from the coupled simulations are
shown in Figure 6 and show that biases remain even in a
reduced ensemble. This highlights the need for future
process-based analysis to understand why, for example,
March rainfall is so low, and models struggle to repro-
duce June rainfall. It would be useful, in the future, to
examine groups of models which have skill in a number
of categories and show weakness in an isolated category,
but also examine which models had more skill in the
more unimodal Northwest Ethiopia than the distinctly
bimodal Awash. Although the full list of skilful models in
each rainfall skill category is different, the main group of
selected models is the same. This is interesting as the
rainfall characteristics in these two regions are quite dif-
ferent. Although part of the Awash basin is contained
within Northwest Ethiopia it is a climatically distinct
region, evident in the average rainfall shown in Figure 2
and rainfall seasonality. But, it is also on the boundary of
the predominantly dry lowland region to the east. The
fact that the same group of models is most skilful indi-
cates that it may be large scale drivers of climate that are

TABLE 2 Awash basin model

selection
Annual cycle Seasonal bias Trend Variability

MPI-ESM-MR MPI-ESM-MR MPI-ESM-MR MPI-ESM-MR

MPI-ESM-LR MPI-ESM-LR IPSL-CM5B-LR MPI-ESM-LR

GFDL-CM3 GFDL-CM3 GFDL-CM3 CanCM4

HadGEM2-AO HadGEM2-AO CNRM-CM5 HadGEM2-AO

ACCESS1-0 CNRM-CM5

Note: Bold models are those selected for three or more criteria.

TABLE 3 Northwest Ethiopia

model selection
Annual cycle Seasonal bias Trend Variability

MPI-ESM-MR MPI-ESM-MR IPSL-CM5B-LR MPI-ESM-MR

MPI-ESM-LR MPI-ESM-LR CESM1-CAM5 MPI-ESM-LR

GFDL-CM3 GFDL-CM3 GFDL-CM3 GFDL-CM3

HadGEM2-AO HadGEM2-AO NorESM1-M HadGEM2-AO

CMCC-CM MRI-CGCM3 CNRM-CM5 ACCESS1-0

inmcm4 GISS-E2-R

CMCC-CM

IPSL-CM5A-MR

Note: Bold models are those selected for three or more criteria.
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predominantly affecting biases in the region rather than
the ability to represent small scale features.

4.2 | Temperature

4.2.1 | Temperature: Annual cycle

Climatologies for modelled and reanalysis temperatures in
the Awash basin are shown in Figure 7 (individual model
annual cycles are shown in Figure B1). The warmest
month of the year is June (NCEP2 peaks slightly earlier in
May), with a secondary maximum in September in ERA-
Interim and CRU. The AMIP annual cycle closely follows
this seasonality, although May is equally as warm as June,
and there is a cool bias from November to March. The
coupled model ensemble has a similar annual cycle to the
AMIP average, with less of a decrease in temperature
between June and September. There is still a cool bias in
the coupled model ensemble from November to March.
The climatologies of individual models are closer to
reanalysis in AMIP rather than coupled configurations.
Cold biases from November–February are a common

characteristic of almost all of the coupled model climatol-
ogies. Certain models stand out: FGOALS-g2 has a
bimodal climatology with a relative minimum during July
and August and it is biases cold throughout the year in
AMIP and coupled simulations, NorESM1-M which is also
biased cold, and inmcm4 which has a unimodal annual
cycle and temperatures of close to 15�C in December and
January where the reanalysis ensemble is 20�C. Most
models are cooler than the ERA-Interim and CRU refer-
ence temperature for rainy seasons, in the annual average,
and for both the AMIP and coupled simulations. Two
models are warmer, especially in the JAS season: GISS-
E2-R and CMCC-CM. The coolest models are CCSM4,
FGOALS-g2, NorESM1-M, and inmcm4.

There is less temperature variation in the observed
annual cycle of Northwest Ethiopia (Figure 8) than there
is in the Awash basin with the observation-based ensem-
ble reaching 23�C, while the Awash basin peaks at above
25�C. Models tend to be warmer than the observation-
based ensemble (individual model annual cycles are
shown in Figure B2), with NCEP2 forming almost a
lower bound and reducing the temperature of the
observation-based ensemble. The exception to this is
inmcm4, a consistent outlier. As Northwest Ethiopia, and
the highlands in general, is cooler than eastern Ethiopia
and the Awash basin, the models' opposite biases indicate
that they may not be able to capture the spatial heteroge-
neity in regional temperature. There is a cool bias from
November to February in the coupled ensemble com-
pared to the data ensemble (with the coupled ensemble
being cooler than NCEP2 in January), which is less pro-
nounced in the AMIP ensemble. Although smaller in
magnitude than that for the Awash basin, this cool bias
is nonetheless a consistent feature.

Biases in the rainy seasons are less consistent in
Northwest Ethiopia than they are for the Awash basin,
and they are also smaller. The only models that have
large biases are inmcm4, which is cool, and GISS-E2-R,
which is warm. The shift in biases between AMIP and
coupled simulations is neither large nor consistent.
Unlike rainfall, there is more of a consistent issue with
particular models across simulation type rather than a
troubling change, consistent for most models, from AMIP
to coupled simulations. Furthermore, the annual cycles
have highlighted the discrepancy between NCEP2 and
ERA-Interim reanalysis temperatures, with ERA-Interim
agreeing much more closely with CRU.

4.2.2 | Temperature: Trends

Trends in temperature tend to be more robust than those
in precipitation in models. For this reason, we are using

TABLE 4 Rainfall trends in observations for the awash basin

and Northwest Ethiopia

Awash basin
MAM

Awash basin
JAS

Awash basin
annual

CHIRPS (−0.021, 0.135) (0.033, 0.090) (0.004, 0.437)

CRU (−0.051, 0.007) (0.050, 0.020) (0.005, 0.483)

NW AM NW JJAS NW annual

CHIRPS (−0.007, 0.610) (0.017, 0.185) (0.006, 0.218)

CRU (−0.031, 0.141) (0.019, 0.335) (0.002, 0.775)

Note: The format in each cell is (trend, p value). Trends are given in
mm�day–1�year–1, and Northwest Ethiopia has been abbreviated to NW.

TABLE 5 Temperature trends in observations for the awash

basin and Northwest Ethiopia

Awash basin
MAM

Awash basin
JAS

Awash basin
annual

CRU (0.056, 0.000) (0.016, 0.143) (0.029, 0.000)

ERA-Interim (0.051, 0.006) (0.007, 0.725) (0.031, 0.001)

NCEP2 (0.018, 0.184) (0.027, 0.009) (0.025, 0.002)

NW AM NW JJAS NW annual

CRU (0.051, 0.000) (0.019, 0.029) (0.028, 0.000)

ERA-Interim (0.039, 0.034) (0.005, 0.564) (0.017, 0.020)

NCEP2 (0.067, 0.000) (0.020, 0.018) (0.034, 0.000)

Note: The format in each cell is (trend, p value). Trends are given in
mm�day–1�year–1, and Northwest Ethiopia has been abbreviated to NW.
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temperature trends to filter out models that are particularly
poor at reproducing observed and reanalysis trends. In
some cases, trends in observed and reanalysis datasets do
not agree, so temperature trends are summarized in Table 5
for reference. The reference dataset used in the relative dif-
ference approximations continues to be ERA-Interim. The
most important differences to note are that Northwest Ethi-
opia JJAS in ERA-Interim, and Awash basin MAM and
JAS in NCEP2 have different trends from other datasets.

In the Awash basin, ERA-Interim records positive
trends for both rainy seasons (MAM: 0.051� per year,
p = .006; JAS: 0.007� per year, p = .725) and the annual
mean (0.031� per year, p = .001), but only the annual
and MAM trends are statistically significant to a 0.1
level. Figure 9a shows most AMIP simulation models do
have sign agreement with ERA-Interim trends. Only
NorESEM1-Mmisses agreement in MAM, while CCSM4
has no agreement across seasons. The majority of AMIP

simulations also show statistically significant trends in
MAM and annually. Fewer AMIP models show good
magnitude agreement with CSIRO-Mk3-6-0, GISS-
E2-R, and inmcm4 standing out as having particularly
good agreement. It is worth noting here that these were
some of the more problematic models in terms of biases.
Most models have too weak a trend even when they
agree in sign, particularly in MAM. This issue is consis-
tent in the coupled simulations, meaning that models
have not captured warming trends in the coupled
period. Another issue in the coupled simulations is that
over half of the models have significant trends in JAS,
but also have the same sign but much larger trend mag-
nitudes than ERA-Interim and AMIP. This would be
cause to question future projections of temperature in
this area, for the following models in particular: IPSL-
CM5a-MR, IPSL-CM5a-LR, MPI-ESM-LR, MPI-ESM-
MR, and bcc-csm-1-m.

FIGURE 3 Northwest Ethiopia annual rainfall cycles for (a) AMIP simulations and (b) coupled simulations from CMIP5 with

observations. Averages are masked as shown in Figure 1b. (c) Biases shown as relative differences ([Model−Chirps]/[Chirps]) in AMIP and

coupled simulation rainfall in key rainy seasons and annual average rainfall in Northwest Ethiopia, organized as in Figure 2 [Colour figure

can be viewed at wileyonlinelibrary.com]

10 DYER ET AL.

http://wileyonlinelibrary.com


ERA-Interim temperature trends are also positive in
Northwest Ethiopia (Figure 9b), and again the main rainy
season, JJAS, has a trend of 0.005� per year (p = .564),
which is not significant at the 0.1 level while the annual
and onset season, AM, trends are both positive, 0.017�

per year (p = .020) and 0.039�per year (p = .034), respec-
tively, which are significant. However, CRU and NCEP2
trends in this season are larger and statistically signifi-
cant. The main difference between Figure 9a and b is the
disagreement in trend magnitude. AMIP annual and AM
trends in Northwest Ethiopia have magnitude disagree-
ments that are smaller than they are for the Awash basin.
In the coupled simulations the annual trends tend to be
too large, while the AM trends are generally too small,
although this is less distinct than for MAM in the Awash
basin. Coupled model trends for JJAS in Northwest Ethi-
opia and JAS in the Awash basin are similar in that
almost all models have a significant trend of the same
sign as the reference with a magnitude that is too big.
This is particularly so for IPSL-CM-5A-LR/MR, MPI-
ESM-LR, and bcc-csm1-1-m.

In both regions, the onset season is that which experi-
ences the strongest warming trends in observations and
reanalysis. ERA-Interim has statistically significant
warming trends for both regions, and the Awash basin

average MAM temperature increase has been 1.275�C,
and for Northwest Ethiopia the AM increase has been
0.975�C over the historical period from 1981 to 2005. The
baseline onset temperature is warmer in the Awash than
it is in Northwest Ethiopia, and is experiencing stronger
warming trends. This season precedes the driest month
of the year, June, and the underestimation of this trend
in coupled models is, therefore, a concerning characteris-
tic of the ensemble.

4.2.3 | Temperature: Variability

Unlike the case of rainfall, models cluster quite closely in
the Taylor diagrams of temperature, shown in
Figure 10a,b, for both AMIP and coupled simulations for
the Awash basin. The AMIP cluster tends to have a
higher standard deviation than the reference and this is
more extreme in the coupled model diagram. Correla-
tions are generally high for AMIP simulations. Again,
while the exact skill score is not used as a threshold, they
are used to compare distributions with more weight being
put on standard deviation. For AMIP, 18 models fall within
the 1.6 score, while for coupled models, this has been
reduced to 12 models for the Awash basin. All of the

FIGURE 4 Differences in trend magnitude (mm�day–1�year–1) and direction relative to the Chirps dataset in (a) Awash basin and

(b) Northwest Ethiopia. Grids with a black dot indicate sign agreement between model and Chirps trend direction. Negative grids represent

a trend magnitude that is smaller than Chirps, while positive grids indicate a modelled trend magnitude that is larger than Chirps. A grid

with value zero indicates perfect agreement between model trend and Chirps trend. Grey triangles represent modelled trends that are

statistically significant at p value of less than 0.1. The bottom three rows show atmospheric simulation trend differences, while the top three

rows show coupled simulation differences. Reference trends from Chirps for the Awash basin: annual, 0.004 mm�day–1�year–1, p = .437;

MAM, −0.021 mm�day–1�year–1, p = .135; JAS, 0.033 mm�day–1�year–1, p = .090. Reference trends from Chirps for Northwest Ethiopia:

annual, 0.006 mm�day–1�year–1, p = .218; AM, −0.007 mm�day–1�year–1, p = .622; JJAS, 0.017 mm�day–1�year–1, p = .191 [Colour figure can be

viewed at wileyonlinelibrary.com]
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FIGURE 6 Annual rainfall cycles for the coupled simulations of models selected as a potential reduced ensemble as highlighted in

Tables 3 and 4. Awash basin annual cycles are shown in (a) and Northwest Ethiopia are shown in (b) [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 5 Taylor diagrams of rainfall in all months of the year in the Awash basin (a and b) and Northwest Ethiopia (c and d) AMIP

simulations, and coupled simulations. The reference time series for the masked region is CHIRPS. Points that are translucent on the

diagrams indicate correlations with are not significant to a 95% level. Standard deviation increases in the radial direction with the reference

(Chirps) value denoted with a star, while correlations vary azimuthally, decreasing from 0� to 90�. Skill score contours are calculated
constant root mean square error (RMSE) which relates the sample standard deviation, reference standard deviation, and sample correlation

as in Taylor et al. (2012). Models with lower RMSE have higher skill. Standard deviations above and below 25% of the reference value are

shown as translucent grey lines, and the RMSE threshold of 1.5 is shown as a bold contour [Colour figure can be viewed at

wileyonlinelibrary.com]
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coupled models within this score were part of the AMIP
group too, except for BNU-ESM which was outside the 1.6
score on the AMIP diagram. In the Northwest Ethiopia dia-
grams (Figure 10c,d) correlations are lower than for the
Awash basin for both model configuration groups, but have
a similar tendency towards higher standard deviations than
the reference. In fact, all models have equal or greater stan-
dard deviations than ERA-Interim. For this case we com-
pare models that fall within the 1.2 skill score. For AMIP
simulations, there are 19 models, while for the coupled sim-
ulation models there are 12. All 12 coupled models were in
the group of 19 AMIP models to fall within this score.

There are a number of models which are outliers in
both regions. The GFDL-CM3 model has much higher
standard deviation than the reference in Northwest Ethi-
opia, and is one of the outliers in the Awash basin too.
The inmcm4 model is off the range of the plots for all of
the Taylor diagrams except for AMIP in the Awash basin.
Finally the bcc-csm1-1 model has consistently low corre-
lations and in the Awash basin is one of the only models
to have a standard deviation lower than the reference.

4.2.4 | Temperature summary

A selection of models using the application of tempera-
ture criteria will not be made as models generally repro-
duce the temperature characteristics of the chosen
regions well. There is also some variation between the
reanalysis and observational temperatures, which makes

selecting models more difficult. For instance, models are
bounded by the bias between NCEP and ERA-Interim
reanalysis temperatures in the annual cycle except for the
boreal winter months in some models, and there is also
some disagreement between which trends are significant
(although there is no sign discrepancy) especially in JJAS
for Northwest Ethiopia.

There are, however, some interesting caveats to be
added to the list of models selected based on rainfall criteria
for each region based on the information in the tempera-
ture evaluations. For instance, MPI-ESM-LR has some
problematic temperature trends. Therefore, in making the
choice between the two models from the same institution it
would be best to use MPI-ESM-MR instead. The GFDL-
CM3 model may have some issues with representing tem-
perature variability in the study regions, and while it should
still be regarded as one of the better performing models for
rainfall we might exercise some caution in using it to diag-
nose changes in extremes in both future rainfall and tem-
perature. However, many of the models that performed
poorly in the temperature evaluations were also among
those that performed poorly in the rainfall evaluations,
especially in the annual cycle and variability categories.

5 | DISCUSSION AND
CONCLUSIONS

Unless Ethiopia is the focus for a project, anything but
the eastern part of the country is usually excluded from

FIGURE 7 Awash Basin annual temperature cycles for a) AMIP simulations, and b) coupled simulations from CMIP5 with

observation-based data. Averages of 1981–2005 surface temperature (�C), averaged over the masked Awash Basin region. Model annual

cycles are solid lines, while reanalysis and observation annual cycles are dashed lines [Colour figure can be viewed at

wileyonlinelibrary.com]
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large model ensemble comparison studies of East Africa,
and it is not generally included in studies of the Sahel at
the same latitude. This evaluation of rainfall and temper-
ature is a starting point in refining which models in the
CMIP5 ensemble may be good candidates to use in exam-
ining future climate in the Awash basin and Northwest
Ethiopia, and to build future process-based evaluations
on. The CMIP model ensemble grows with each IPCC
iteration. While the use of the ensemble mean to summa-
rize the model set is convenient, the approach masks the
contribution of models with poor skill.

There were some key differences in the model repre-
sentations of the rainfall in the Awash basin and North-
west Ethiopia. First, in the Awash basin, the onset season
was generally too dry in coupled models and less so in
AMIP models, while in Northwest Ethiopia the onset sea-
son bias was largest in the AMIP ensemble, being too
wet. The annual cycle of the Awash basin rainfall was
problematic in coupled models because it was shifted to
be later in the year than in observation, while in most
AMIP models it was too bimodal with the second rainy
season occurring later than in observations. In Northwest
Ethiopia, the annual cycle was bimodal for both model
ensembles even though the observations show a more
unimodal annual cycle with a main JJAS rainy season
and an AM onset season.

Some of the characteristics of these regional differ-
ences and those between the AMIP and coupled ensem-
bles are also present in studies of East Africa, mostly

revolving around model representation of the onset rainy
season (AM or MAM). For instance, Rowell et al. (2015)
showed that coupled CMIP5 have more trouble rep-
roducing trends in this season than AMIP models, while
Dunning et al. (2017) showed that CMIP5 models simu-
late late onset in this season. For this reason the transi-
tions from the biases in the Awash basin to the biases in
Northwest Ethiopia have proved interesting. The under-
estimation of coupled CMIP5 rainfall in the MAM rainy
season compared to the overestimation in the later OND
rainy season has been documented in studies on East
Africa (Tierney et al., 2015). This underestimation of
MAM rainfall in coupled CMIP5 models is present in the
Awash basin too, but as previously discussed, the AMIP
representation of MAM rainfall in most models also is
not accurate. The seasonality which makes AMIP models
better able to capture East African MAM rainfall persists
in Northwest Ethiopia; many models have bimodal
annual cycles with wet AM biases, and distinct MAM
and OND rainfall seasons in some cases, resulting in an
ensemble annual cycle which is approaching bimodal.
This seasonality is less clear in the coupled ensemble, but
this is in part because March rainfall is underestimated
in numerous models, while April and May still tend to be
overestimated. This is also a holdover of coupled model
behaviour of a late long rains season in East Africa more
broadly, and contributes to the missing dry June in
models in the Awash basin. The feature of a dry June is
an important feature in the annual cycle and an

FIGURE 8 Northwest Ethiopia annual temperature cycles for a) AMIP simulations, and b) coupled simulations from CMIP5 with

observation-based data. Averages of 1981–2005 surface temperature (�C), averaged over the masked Northwest Ethiopia region. Model

annual cycles are solid lines, while reanalysis and observation annual cycles are dashed lines [Colour figure can be viewed at

wileyonlinelibrary.com]
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important feature for models to capture if being used to
investigate future water stress in the region.

The biases in these regions of Ethiopia, the missing
June minimum in the Awash basin and the persistent
bimodal cycle in Northwest Ethiopia, indicate that the
ability of AMIP simulations to reproduce the East African
MAM season is due to a bias during that season. The dis-
tinctly bimodal annual cycle and high rain rates in MAM
persist north of the region for which the MAM peak is
found in the observation based datasets. These connec-
tions and biases should be explored further, as they may
be able to shed some light on biases in East Africa as a
whole and not just in these areas of Ethiopia.

There were some unexpected findings, in particular
for temperature. First, the cold bias from November to
February was a consistent feature in both parts of Ethio-
pia, both simulation configurations, and for the majority
of models. This bias will be essential to quantify from a
policy perspective. These months are some of the driest
during the year. The compounding effects of dryness and
higher temperatures are part of what can cause the accu-
mulating feedbacks to drought events which have hit
Ethiopia in the past and potentially into the future.
Models that cannot capture higher temperatures in the

dry season may not be useful tools in predicting such
events. Like the cold biases, temperature trends have
been less widely studied in models but would have
important implications for the use of future projections.
We found that the strongest warming trend in both
regions was in the onset season (AM or MAM), the
warmest part of the year, and that the Awash basin had
stronger warming trends in the annual and seasonal
averages. Coupled models were warming too much in the
primary rainy season, while all models were not warming
enough in the onset rainy season.

Annual trends in models also tended to overestimate
reanalysis trends. Jury and Funk (2013) examined annual
temperature trends for the whole of Ethiopia from 1948
to 2006 and found a similar warming trend to our Awash
basin trend (0.031� per year) and also that this warming
trend was set to continue in the GFDL simulation they
used. Given the biased trends of this model and the
coupled ensemble in general, this future trend might be
too large. The impact of trends in temperature is com-
pounded by issues highlighted in the rainfall trends. The
onset rainy season in both regions has lower rain rates,
and higher temperatures, than the main rainy season.
This season is still used as a planting and growing season

FIGURE 9 Differences in trend magnitude (
�
C�year–1) and direction relative to ERA-interim temperatures in (a) Awash Basin and

(b) Northwest Ethiopia. Grids with a black dot indicate sign agreement between model and ERA-Interim trend direction. negative grids

represent a trend magnitude that is smaller than ERA-Interim, while positive grids indicate a modelled trend magnitude that is larger than

ERA-Interim. A grid with value zero indicates perfect agreement between model trend and ERA-Interim trend. Grey triangles represent

modelled trends that are statistically significant at p value of less than 0.1. The bottom three rows show atmospheric simulation trend

differences, while the top three rows show coupled simulation differences. Reference trends from ERA-Interim for the Awash basin: Annual,

0.031� per year, p = .001; MAM, 0.051� per year, p = .006; JAS, 0.007� per year, p = .725. Reference trends from ERA-Interim for Northwest

Ethiopia: annual, 0.017� per year, p = .020; AM, 0.039� per year, p = .034; JJAS, 0.005� per year, p = .564 [Colour figure can be viewed at

wileyonlinelibrary.com]

DYER ET AL. 15

http://wileyonlinelibrary.com


for specific crops and rainfall is correlated with the suc-
cess of certain crops in this season (Borgomeo et al.,
2018). Changes in the onset rainy season could have dra-
matic effects on the ability to grow certain crops or
require a significant adaptation effort. Biases in rainfall
can also influence volumetric flows and flooding with
biases in June and October changing the total volume of
the Kiremt season indicating more flooding problems
than what is presently experienced by the basin giving a
false alarm of flooding risk. Similarly, the bias in March
gives false indication that water will not be a limiting fac-
tor during the Belg season, which is usually affected by
drought conditions.

We have identified three models to be used in a
process-based analysis for our two study regions: GFDL-

CM3, HadGEM2-AO, and MPI-ESM-MR. These models
showed most skill in both AMIP and coupled simula-
tions for rainfall. Most performed well in the tempera-
ture evaluation, with a caveat for GFDL-CM3
temperature variability. The MPI-ESM models were
also found to perform well over the Greater Horn of
Africa by Otieno and Anyah (2013), who also argued for
evaluation of model uncertainties in the creation of
reduced ensembles, and studies of future change. Our
reduced ensemble differs in that it does not include MRI-
CGCM3, and does include GFDL-CM3 and HadGEM2-AO,
highlighting differences at the regional and sub-regional
scale, and the importance of carrying out this kind of evalu-
ation for the region in which modelled information will
be used.

FIGURE 10 Taylor diagrams of temperature in all months of the year in the awash basin (a and b) and Northwest Ethiopia (c and d)

AMIP simulations, and coupled simulations. The reference time series for the masked region is ERA-Interim. Points that are translucent on

the diagrams indicate correlations with are not significant to a 95% level. Standard deviation increases in the radial direction with the

reference (ERA-Interim) value denoted with a star, while correlations vary azimuthally, decreasing from 0� to 90�. Skill score contours are
calculated constant root mean square error (RMSE) which relates the sample standard deviation, reference standard deviation, and sample

correlation as in Taylor et al. (2012). Models with lower RMSE have higher skill. Standard deviations above and below 25% of the reference

value are shown as translucent grey lines, and the RMSE threshold of 1.5 is shown as a bold contour [Colour figure can be viewed at

wileyonlinelibrary.com]
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Investigating which atmospheric processes affect biases
is a natural next step. Beyond this, the relationship between
Ethiopian rainfall and regional SSTs needs to be better
understood. This would build upon previous work by
Degefu et al. (2017), Li et al. (2016) and Diro et al. (2011)
but incorporate more models and focus on understanding
the dynamics of biases in the onset season along with as the
main rainy season. The interactions with surrounding Afri-
can climate regimes, such as the Sahel band, and East and
Central Africa have also been alluded to (Viste et al., 2013),
but requires further investigation with relation to GCMs.
This is especially important as models are not able to distin-
guish these regions very distinctly, causing some of the
model biases. Finally, the effects of some of the large scale
overturning circulations on Ethiopian rainfall may highlight
some potential causes of bias in models. In particular inves-
tigating the impact of the ability of models to capture the
Asian Monsoon circulation on rainfall in Ethiopia from
June–September building on the connection between the
Tropical Easterly Jet and Ethiopian rainfall shown by Li
et al. (2016) and on the work of Sperber et al. (2013) who
did a detailed analysis of the skill of CMIP3/5 models in
reproducing the Asian Monsoon.

This study is the necessary first part of a multi-phase
process of model evaluation which will not only lead to bet-
ter constrained projections, but also help to contextualize
our understanding and use of these projections. Of course,
the ability of models to accurately simulate future climate
cannot be diagnosed purely by looking at historical simula-
tions, but it does provide a good baseline for examining
model behaviour. Being able to quantify and explain biases
and uncertainty, and clearly map connections between
regional climates is an important part of developing better
modelling tools. Following such an approach is also key to
building better, sustainable, adaptive capacity.
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APPENDIX A

RAINFALL ANNUAL CYCLES

FIGURE A1 Awash basin annual rainfall cycles for AMIP and coupled model simulations and observation-based data (mm/day)

[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE A2 Northwest Ethiopia annual rainfall cycles for AMIP and coupled model simulations and observation-based data

(mm/day) [Colour figure can be viewed at wileyonlinelibrary.com]
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APPENDIX B

TEMPERATURE ANNUAL CYCLES

FIGURE B1 Awash basin annual temperature cycles for AMIP and coupled model simulations and observation-based data (C)

[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE B2 Northwest Ethiopia annual temperature cycles for AMIP and coupled model simulations and observation-based data (C)

[Colour figure can be viewed at wileyonlinelibrary.com]
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